Synthesis of N-benzoyl Amino Esters and N-benzoyl Amino Acids and their Antifungal Activity

Yureli Chiguils-Pérez¹, Alejandro Israel Rodríguez-Hurtado², Lemuel Pérez-Picaso^{1*}, Roxana Martínez-Pascual^{1*}, María de los Ángeles Martínez-Rivera², Emanuel Hernández-Núñez⁴, Omar Viñas-Bravo¹, Sharon Rosete-Luna³, Nelda Xanath Martínez-Galero¹

¹Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, México.

²Laboratorio de Micología Médica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, 11340, México.

³Facultad de Ciencias Químicas, Universidad Veracruzana, Oriente 6, Col. Rafael Alvarado, 94340, Orizaba, Veracruz.

⁴Departamento de Recursos del Mar, CINVESTAV-IPN Unidad Mérida, Mérida, 97310, Yucatán, México.

***Corresponding author:** Roxana Martínez-Pascual, email: <u>rpascual@unpa.edu.mx</u>; Lemuel Pérez-Picaso, email: <u>lemuelp@unpa.edu.mx</u>; Tel.: +52 287 8759240 ext 230.

Received May 17th, 2021; Accepted November 30th , 2021.

DOI for the article: http://dx.doi.org/10.29356/jmcs.v66i1.1584

Supplementary Information

Table of contents

1.	Materials and Methods	2
2.	Procedure for the synthesis of α -aminoesters	2
3.	General Procedure for the synthesis of <i>N</i> -benzoylamino acid methyl esters (1-7, 9-17 and 19).	2
4.	Characterization data of compounds 1-7, 9-17 and 19.	2
5.	General Procedure for the synthesis of <i>N</i> -benzoylaminoacids (8, 18, 20-23).	8
6.	Characterization data of compounds 8, 18, 20-23	8
7.	Active Site Validation	10
8.	Molecular Docking	12
9.	References	21
10.	NMR ¹ H and ¹³ C Spectra	22

Materials and Methods

Reagents were used as received from Sigma-Aldrich without further purification. NMR spectra were recorded on a Varian Mercury spectrometer (400 MHz for ¹H, 100.6 MHz for ¹³C). Chemical shifts are quoted in ppm (δ) and spectra were referenced to the residual solvent signals (7.27 and 77.2 ppm for CDCl₃). Coupling constants (*J*) are expressed in Hertz (Hz). Multiplicities are recorded as follows: s= singlet, d= doublet, t= triplet, dd= doublet of doublets, td= triplet of doublets, dh= doublet of heptuplet, brs= broad singlet, q= quartet, and m= multiplet. IR spectra were acquired on FTIR Perkin Elmer Spectrum 100 (range: 4000-600 cm⁻¹). High-resolution mass spectra (HRMS) were recorded on a JEOL JMStation-JM 700 mass spectrometer at 70 eV in a matrix of glycerol or in a Synapt G2-Si (Waters) spectrometer equipped with electrospray ion source (ESI), single quadrupole mass filter and time of flight mass analyzer (Q-TOF). Melting points were measured in a Mel-Temp apparatus and were not corrected. Analytical TLC was performed using pre-coated silica gel plates 60 F₂₅₄, and chromatographic columns were carried out on DavisilTM grade 633 silica gel (200–425 mesh).

General Procedure for the synthesis of α -aminoesters

Trimethylsilane chloride (2 mmol) was added to a solution of the corresponding aminoacid (1 mmol) in MeOH (5 mL). The solution was stirred for 12 h at room temperature. Then, the solvent was evaporated under reduced pressure. The residue was characterized and used without further purification in the following reaction.

General Procedure for the synthesis of *N*-benzoylamino acid methyl esters (1-7, 9-17 and 19)

A solution of the corresponding α -aminoester (1 mmol), the carboxylic acid (1 mmol), DMAP (0.1 mmol), *N*-(3-Dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (1.5 mmol) and triethylamine (2 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature overnight. Then, CH₂Cl₂ (20 mL) and NH₄Cl sat. aqueous solution (10 mL) were added to the mixture. The organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic fractions were dried over Na₂SO₄, filtrated and the filtrate was evaporated under reduced pressure; the residue was purified as indicated below.

Characterization data of compounds 1-7, 9-17 and 19

N-Benzoyl-L-valine methyl ester (1)

Purification by column chromatography (hexane–EtOAc, 80:20) gave 1 as a white solid (200 mg, 85% yield); mp 110.9–111.4 °C; Characterization of 1 has been previously reported in the literature [1,2]; IR (cm⁻¹): 3333 (NH), 2977, 2300, 1755 (COOR), 1500, 1560; NMR ¹H (400 MHz, CDCl₃) δ : 7.76–7.72 (2H, dd, *J*= 7.0, 1.6 Hz, H_{Ar}), 7.47–7.43 (1H, m, H_{Ar}), 7.40–7.36 (2H, m, H_{Ar}), 6.55 (1H, d, *J*= 8.7 Hz, NH), 4.72 (1H, dd, *J*= 8.7, 4.9 Hz, H_a), 3.71 (3H, s, CH₃O), 2.22 (1H, dh, *J*= 6.9, 4.9 Hz, H_β), 0.95 (3H, d, *J*= 6.9 Hz, H_γ), 0.92 (3H, d, *J*= 6.9 Hz, H_γ); NMR ¹³C (101 MHz, CDCl₃) δ : 172.8 (COOR), 167.4 (CON), 134.4 (C_{Ar}), 131.9 (C_{Ar}), 128.8 (C_{Ar}), 127.2 (C_{Ar}), 57.6 (CH₃O), 52.5 (C_a), 31.9 (C_β), 19.2 (C_γ), 18.2 (C_γ). ESI-HRMS calcd. for C₁₃H₁₈NO₃ [M+H]⁺: 236.1287, found: 236.1269.

Purification by column chromatography (hexane–EtOAc, 80:20) gave 2 as a white solid (199 mg, 75% yield); mp 80.9–81.5 °C; IR (cm⁻¹): 3224 (NH), 1719 (CO₂R), 1620 (CONH), 1522; NMR ¹H (400 MHz, CDCl₃) δ : 7.40–7.27 (3H, m, H_{Ar}), 7.01 (1H, ddd, *J*= 8.0, 2.6, 1.1 Hz, H_{Ar}), 6.95 (1H, d, *J*= 8.7 Hz, NH), 4.74 (1H, dd, *J*= 8.7, 5.4 Hz, H_{\alpha}), 3.80 (3H, s, CH₃OAr), 3.75 (3H, s, CH₃O), 2.27 (1H, dh, *J*= 6.8, 5.4 Hz, H_{\beta}), 1.00 (3H, d, *J*= 6.8 Hz, H_{\garrace}), 0.98 (3H, d, *J*= 6.8 Hz, H_{\garrace}); NMR ¹³C (101 MHz, CDCl₃) δ : 172.5 (COOR), 167.2 (CON), 199.5 (C_{Ar}), 136.4 (C_{Ar}), 129.4 (C_{Ar}), 118.8 (C_{Ar}), 117.7 (C_{Ar}), 112.5 (C_{Ar}), 57.6 (CH₃OAr), 55.3 (CH₃O), 52.1 (C_{\alpha}), 18.9 (C_{\garrace}), 18.0 (C_{\garrace}). ESI-HRMS calcd. for C₁₄H₂₀NO₄ [M+H]⁺: 266.1392, found: 266.1378.

N-(3,4-dimethoxybenzoyl)-L-valine methyl ester (3)

Purification by column chromatography (hexane–EtOAc, 60:40) gave 3 as a white solid (221 g, 75% yield); mp 90.5-91.0 °C; IR (cm⁻¹): 3270 (NH), 1732 (CO₂R), 1620 (CONH); NMR ¹H (400 MHz, CDCl₃) δ: 7.44 (1H, d, *J*= 2.0 Hz, H_{Ar}), 7.34 (1H, dd, *J*= 8.4, 2.0 Hz, H_{Ar}), 6.88 (1H, d, *J*= 8.4 Hz, H_{Ar}), 6.57 (1H, d, *J*= 8.6 Hz, NH), 4.77 (1H, dd, *J*= 8.6, 5.0 Hz, H_α), 3.94 (3H, s, 3-CH₃O), 3.93 (3H, s, 4-CH₃O), 3.78 (3H, s, CH₃O), 2.28 (1H, dh, *J*= 6.9, 5.0 Hz, H_β), 1.02 (3H, d, *J*= 6.9 Hz, H_γ), 0.99 (3H, d, *J*= 6.9 Hz, H_γ⁻); NMR ¹³C (101 MHz, CDCl₃) δ: 173.0 (COOR), 167.0 (CON), 152.2 (C_{Ar}), 149.3 (C_{Ar}), 127.0 (C_{Ar}), 119.6 (C_{Ar}), 111.0 (C_{Ar}), 110.5 (C_{Ar}), 57.6 (3-CH₃O), 56.3 (4-CH₃O), 56.2 (CH₃O), 52.4 (C_α), 31.9 (C_β), 19.2 (C_γ), 18.2 (C_γ⁻). ESI-HRMS calcd. for C₁₅H₂₂NO₅ [M+H]⁺: 296.1498, found: 296.1501.

N-[2-(4-hydroxyphenyl)acetyl]-L-valine methyl ester (4)

HC

Purification by column chromatography (hexane-EtOAc, 50:50) gave 4 as a yellow solid (216 mg, 86% yield), mp 111.1-112.7 °C. IR (cm⁻¹): 3290 (OH), 1752 (CO₂R), 1600 (CONH). NMR ¹H (400 MHz, CDCl₃) δ : 8.14 (1H, brs, OH), 7.05 (2H, d, *J*= 8.5 Hz, H_{Ar}), 6.78 (2H, dd, *J*= 8.5, 2.4 Hz, H_{Ar}), 6.29 (1H, d, *J*= 8.8 Hz, NH), 4.51 (1H, dd, *J*= 8.8, 5.2 Hz, H_a), 3.67 (3H, s, CH₃O), 3.52 (2H, s, CH₂Ph), 2.07 (1H, dh, *J*= 6.8, 5.2 Hz, H_β), 0.84 (3H, d, *J*= 6.8 Hz, H_γ), 0.76 (3H, d, *J*= 6.8 Hz, H_γ). NMR ¹³C (101 MHz, CDCl₃) δ : 172.8 (COOR), 172.5 (CON), 156.2 (C_{Ar}), 130.5 (C_{Ar}), 125.2 (C_{Ar}), 116.1 (C_{Ar}), 57.3 (CH₃O), 52.4 (C_a), 42.6 (CH₂Ph), 31.1 (C_β), 19.0 (C_γ), 17.7 (C_γ). ESI-HRMS calcd. for C₁₄H₂₀NO₄ [M+H]⁺: 266.1392 found: 266.1381.

N-Benzoyl-D-valine methyl ester (5)

Purification by column chromatography (hexane–EtOAc, 80:20) gave 5 as a white solid (200 mg, 85% yield); mp 110.9–111.4 °C; Characterization of 5 has been previously reported in the literature [6]; IR (cm⁻¹): 3333 (NH), 2977, 2300, 1755 (COOR), 1500, 1560; NMR ¹H (400 MHz, CDCl₃) δ : \Box 7.86–7.76 (2H, m, H_{Ar}), 7.56–7.49 (1H, m, H_{Ar}), 7.48–7.42 (2H, m, H_{Ar}), 6.63 (1H, d, *J*= 8.7 Hz, NH), 4.79 (1H, dd, *J*= 8.7, 4.9 Hz, H_α), 3.78 (3H, s, CH₃O), 2.28 (1H, dh, *J*= 6.9, 4.9 Hz, H_β), 1.02 (3H, d, *J*= 6.9 Hz, H_γ), 0.99 (3H, d, *J*= 6.9 Hz, H_γ); NMR ¹³C (101 MHz, CDCl₃) δ : 172.8 (COOR), 167.4 (CON), 134.4 (C_{Ar}), 131.9 (C_{Ar}), 128.8 (C_{Ar}), 127.2 (C_{Ar}), 57.6 (CH₃O), 52.5 (C_α), 31.9 (C_β), 19.2 (C_γ), 18.2 (C_γ). ESI-HRMS calcd. for C₁₃H₁₅NNaO₂ [M-H₂O+Na]⁺: 240.1000 found: 240.1421

Purification by column chromatography (hexane–EtOAc, 50:50) gave 6 as a white solid (246 mg, 99% yield); mp 93-96 °C; IR (cm⁻¹): 3326 (NH), 1741 (CO₂R), 1634 (CONH); NMR ¹H (CDCl₃) δ: 7.72 (2H, dd, J= 8.4, 0.6 Hz, H_{Ar}), 7.24 (2H, dd, J= 8.4, 0.6 Hz, H_{Ar}), 6.66 (1H, d, J= 8.7 Hz, NH), 4.78 (1H, dd, J= 8.7, 5.0 Hz, H_α), 3.77 (3H, s, CH₃O), 2.40 (3H, s, CH₃-Ar), 2.27 (1H, dh, J= 6.9, 5.0 Hz, H_β), 1.01 (3H, d, J= 6.9 Hz, H_γ), 0.99 (3H, d, J= 6.9 Hz, H_γ); NMR ¹³C (CDCl₃) δ: 172.9 (COOR), 167.4 (CON), 142.3 (C_{Ar}), 131.4 (C_{Ar}), 129.4 (C_{Ar}), 127.2 (C_{Ar}), 57.5 (C_α), 52.4 (CH₃O), 31.8 (C_β), 21.6 (CH₃-Ar), 19.1 (C_γ), 18.1 (C_γ). ESI-HRMS calcd. for C₁₄H₂₀NO₃ [M+H]⁺: 250.1443, found: 250.1442.

N-(2,4,6-trimethylbenzoyl)-L-valine methyl ester (7)

Purification by column chromatography (hexane–EtOAc, 60:40) gave 7 as a white solid (100 mg, 36% yield); mp 78-79 °C; IR (cm⁻¹): 1709 (CO₂R), 1660 (CONH); NMR ¹H (CDCl₃) δ: 6.86 (2H, s, H_{Ar}), 6.11 (1H, d, *J*= 8.8 Hz, NH), 4.80 (1H, dd, *J*= 8.8, 4.6 Hz, H_α), 3.77 (3H, s, CH₃O), 2.36–2.23 (1H, m, H_β), 2.31 (6H, s, *o*-CH₃-Ar) 2.28 (3H, s, *p*-CH₃-Ar), 1.05 (3H, d, *J*= 6.9 Hz, H_γ), 0.93 (3H, d, *J*= 6.9 Hz, H_γ); NMR¹³C (CDCl₃) δ: 172.5 (COOR), 170.7 (CON), 138.8 (C_{Ar}), 134.7 (C_{Ar}), 134.5 (C_{Ar}), 128.4 (C_{Ar}), 57.1 (C_α), 52.4 (CH₃O), 31.2 (C_β), 21.3 (*p*-CH₃-Ar), 19.4 (*o*-CH₃-Ar), 17.9 (C_γ). ESI-HRMS calcd. for C₁₆H₂₃NNaO₃ [M+Na]⁺: 300.1576, found: 300.1574.

N-Benzoyl-L-tryptophan methyl ester (9)

9

Purification by column chromatography (hexane–EtOAc, 70:30) gave 9 as a yellow solid (145 mg, 45% yield); mp 107-109 °C; Characterization of 9 has been previously reported in the literature [3]; IR (cm⁻¹): 3360 (NH), 1733 (CO₂R), 1636 (CONH); NMR ¹H (CDCl₃) δ : 8.36 (1H, s, NH_{Indol}), 7.67 (2H, dd, *J*= 8.3, 1.2 Hz, H_{Ar}), 7.54 (2H, d, *J*= 7.9 Hz, H_{Ar}), 7.49–7.44 (1H, m, H_{Ar}), 7.38–7.32 (2H, m, H_{Ar}), 7.20-7.15 (1H, m, H_{Ar}), 7.09-7.05 (1H, m, H_{Ar}), 6.97 (1H, d, *J*= 2.4 Hz, H_{Ar}), 6.71 (1H, d, *J*= 7.6 Hz, NH), 5.15 (1H, dt, *J*= 7.6, 5.2 Hz, H_α), 3.71 (3H, s, CH₃O), 3.47 (1H, dd, *J*= 14.8, 5.2 Hz, H_β), 3.42 (1H, dd, *J*= 14.8, 5.2 Hz, H_β⁻); NMR ¹³C (CDCl₃) δ : 172.6 (COOR), 167.2 (CON), 136.3 (C_{Ar}), 134.0 (C_{Ar}), 131.9 (C_{Ar}), 128.7 (C_{Ar}), 127.8 (C_{Ar}), 127.2 (C_{Ar}), 123.0 (C_{Ar}), 122.4 (C_{Ar}), 119.9 (C_{Ar}), 118.8 (C_{Ar}), 111.5 (C_{Ar}), 110.1 (C_{Ar}), 53.7 (C_α), 52.6 (CH₃O), 27.8 (C_β). HRMS-FAB calcd. for C₁₉H₁₉N₂O₃ [M+H]⁺: 323.1396, found: 323.1416.

N-(2-hydroxybenzoyl)-L-tryptophan methyl ester (10)

Purification by column chromatography (hexane–EtOAc, 80:20) gave 10 as a yellow oil (196 mg, 58% yield); IR (cm⁻¹): 3406 (NH), 1731 (CO₂R), 1638 (CONH); NMR ¹H (CDCl₃) δ : 12.15 (1H, s, OH), 8.18 (1H, brs, NH_{indol}), 7.53 (1H, dd, *J*= 8.0, 0.8 Hz, H_{Ar}), 7.39–7.35 (2H, m, H_{Ar}), 7.24–7.07 (3H, m, H_{Ar}), 7.00 (1H, d, *J*= 2.4 Hz, H_{Ar}), 6.97 (1H, dd, *J*= 8.4, 1.2 Hz, H_{Ar}), 6.85 (1H, d, *J*= 7.4 Hz, NH), 6.75 (1H, ddd, *J*= 8.2, 7.3, 1.2 Hz, H_{Ar}), 5.10 (1H, dt, *J*= 7.4, 5.2 Hz, H_a), 3.74 (3H, s, CH₃O), 3.47 (1H, dd, *J*= 20.0, 5.2 Hz, H_β), 3.42 (1H, dd, *J*= 20.0, 5.2 Hz, H_β); NMR ¹³C (CDCl₃) δ : 172.2 (COOR), 169.7 (CON), 161.6 (C_{Ar}.OH), 136.3 (C_{Ar}), 134.6 (C_{Ar}), 127.6 (C_{Ar}), 123.1 (C_{Ar}), 122.5 (C_{Ar}), 119.9 (C_{Ar}), 118.9 (C_{Ar}), 118.5 (C_{Ar}), 113.9 (C_{Ar}), 111.6 (C_{Ar}), 109.6 (C_{Ar}), 53.2 (C_a), 52.7 (CH₃O), 27.6 (C_β). HRMS- FAB calcd. for C₁₉H₁₉N₂O₄ [M+H]⁺: 339.1345, found: 339.1351.

N-(2-hydroxynicotinoyl)-L-tryptophan methyl ester (11)

Purification by column chromatography (EtOAc) gave 11 as white solid (146 g, 43% yield); mp 113-117 °C; IR (cm⁻¹): 3242 (NH), 1737 (CO₂R), 1661 (CONH); NMR ¹H (CDCl₃) δ : 11.97 (1H, brs, OH), 10.13 (1H, d, *J* = 7.2 Hz, NH), 8.47 (1H, dd, *J* = 7.2, 2.0 Hz, H_{Ar}), 8.38 (1H, brs, NH), 7.56 (1H, d, *J* = 8.2 Hz, H_{Ar}),

7.26–7.23 (1H, m, H_{Ar}), 7.14–7.03 (4H, m, H_{Ar}), 6.30 (1H, dd, J= 7.2, 6.4 Hz, H_{Ar}), 5.11–5.05 (1H, m, H_a), 3.70 (3H, s, CH₃O), 3.42 (1H, dd, J= 14.8, 6.2 Hz, H_β), 3.38 (1H, dd, J= 14.8, 5.3 Hz, H_β); NMR ¹³C (CDCl₃) δ: 172.9 (COOR), 163.8 (C_{Ar}.OH), 163.4 (CO-NH), 145.4 (C_{Ar}), 138.4 (C_{Ar}), 136.2 (C_{Ar}), 127.5 (C_{Ar}), 123.5 (C_{Ar}), 122.2 (C_{Ar}), 120.7 (C_{Ar}), 119.6 (C_{Ar}), 118.7 (C_{Ar}), 111.5 (C_{Ar}), 110.0 (C_{Ar}), 107.8 (C_{Ar}), 53.4 (C_a), 52.6 (CH₃O), 27.8 (C_β). HRMS-FAB calcd. for C₁₈H₁₈N₃O₄ [M+H]⁺: 340.1297, found: 340.1315.

N-(2-chloronicotinoyl)-L-tryptophan methyl ester (12)

Purification by column chromatography (hexane–EtOAc, 60:40) gave 12 as brown oil (100 mg, 28% yield); mp 113–117 °C; IR (cm⁻¹): 3303 (NH), 1738 (CO₂R), 1650 (CONH); NMR ¹H (CDCl₃) δ : 8.46 (1H, brs, NH_{Indol}), 8.37 (1H, d, *J*= 2.2 Hz, H_{Ar}), 7.91 (1H, d, *J*= 7.5 Hz, H_{Ar}), 7.54 (1H, d, *J*= 8.0 Hz, H_{Ar}), 7.31 (1H, d, *J*= 8.0 Hz, H_{Ar}), 7.25–7.20 (1H, m, H_{Ar}), 7.18–7.13 (1H, m, H_{Ar}), 7.11–7.02 (3H, m, H_{Ar}), 5.11 (1H, dt, *J*= 12.9, 5.6 Hz, H_α), 3.73 (3H, s, CH₃O), 3.49 (1H, dd, *J*= 14.8, 5.6 Hz, H_β), 3.41 (1H, dd, *J*= 14.8, 5.6 Hz, H_β⁻); NMR ¹³C (CDCl₃) δ : 172.1 (COOR), 164.5 (CON), 151.1 (C_{Ar}), 147.5 (C_{Ar}), 139.8 (C_{Ar}), 136.3 (C_{Ar}), 130.8 (C_{Ar}), 127.6 (C_{Ar}), 123.2 (C_{Ar}), 122.4 (C_{Ar}), 119.8 (C_{Ar}), 118.6 (C_{Ar}), 111.5 (C_{Ar}), 109.6 (C_{Ar}), 54.0 (C_α), 52.8 (CH₃O), 27.6 (C_β). HRMS-FAB calcd. for C₁₈H₁₇ClN₃O₃ [M+H]⁺: 358.0958, found: 358.0945.

N-(4-methylbenzoyl)-l-tryptophan methyl ester (13)

13

Purification by column chromatography (hexane–EtOAc, 80:20) gave 13 as a yellow solid (255 mg, 76% yield); mp 117–119 °C; IR (cm⁻¹): 3360 (NH), 1731 (CO₂R), 1633 (CONH); NMR ¹H (CDCl₃) δ: 8.81 (1H, s, NH_{Indol}), 7.54 (2H, d, *J*= 8.2 Hz, H_{Ar}), 7.50 (1H, d, *J*= 7.7 Hz, H_{Ar}), 7.26 (1H, dd, *J*= 8.9, 0.7 Hz, H_{Ar}), 7.15–7.02 (3H, m, H_{Ar}) 6.90 (1H, d, *J*= 2.4 Hz, H_{Ar}), 6.80 (1H, d, *J*= 7.6 Hz, NH), 5.11 (1H, dt, *J*= 7.6, 5.2, Hz, H_α), 3.64 (3H, s, CH₃O), 3.41 (1H, dd, *J*= 16.4, 5.2 Hz, H_β), 3.38 (1H, dd, *J*= 16.4, 5.2 Hz, H_β), 2.30 (3H, s, CH₃); NMR ¹³C (CDCl₃) δ: 172.6 (COOR), 167.3 (CON), 142.3 (C_{Ar}), 136.3 (C_{Ar}), 130.9 (C_{Ar}), 129.3 (C_{Ar}), 127.7 (C_{Ar}), 127.2 (C_{Ar}), 123.2 (C_{Ar}), 122.1 (C_{Ar}), 119.6 (C_{Ar}), 118.5 (C_{Ar}), 111.6 (C_{Ar}), 109.6 (C_{Ar}), 53.7 (C_α), 52.5 (CH₃O), 27.7 (C_β), 21.5 (CH₃-Ar). HRMS-FAB calcd. for C₂₀H₂₁N₂O₃ [M+H]⁺: 337.1552, found: 337.1535.

N-(2,4,6-trimethylbenzoyl)-L-tryptophan methyl ester (14)

Purification by column chromatography (hexane–EtOAc, 80:20) gave 14 as a yellow oil (109 mg, 30% yield); IR (cm⁻¹): 3279 (NH), 1738 (CO₂R), 1640 (CONH); NMR ¹H (CDCl₃) δ : 8.57 (1H, brs, NH_{indol}), 7.53 (1H, d, *J*= 8.0 Hz, H_{Ar}), 7.24 (1H, d, *J*= 8.0 Hz, H_{Ar}), 7.16-7.03 (2H, m, H_{Ar}), 6.91 (1H, d, *J*= 2.4 Hz, H_{Ar}), 6.75 (2H, s, H_{Ar}), 6.13 (1H, d, *J*= 8.0 Hz, NH), 5.18 (1H, ddd *J*= 8.0, 6.8, 5.7 Hz, H_{\alpha}), 3.69 (3H, s, CH₃O), 3.36 (1H, dd, *J*= 14.8, 5.7 Hz, H_{\beta}), 3.31 (1H, dd, *J*= 14.8, 6.8 Hz, H_{\beta}), 2.22 (3H, s, *p*-CH₃Ar), 2.11 (6H, s, *o*-CH₃Ar); NMR ¹³C (CDCl₃) δ : 172.6 (COOR), 170.6 (CON), 138.7 (C_{Ar}), 136.4 (C_{Ar}), 134.5 (C_{Ar}), 134.2 (C_{Ar}), 128.3 (C_{Ar}), 127.4 (C_{Ar}), 123.0 (C_{Ar}), 122.2 (C_{Ar}), 119.6 (C_{Ar}), 118.5 (C_{Ar}), 111.5 (C_{Ar}), 109.7 (C_{Ar}), 52.6 (C_{\alpha}CH₃O), 28.0 (C_{\beta}(*p*-CH₃-Ar), 19.0 (*o*-CH₃-Ar). HRMS-FAB calcd. for C₂₂H₂₅N₂O₃ [M+H]⁺: 365.1865, found: 365.1839.

N-(4-acetylbenzoyl)-L-tryptophan methyl ester (15)

Purification by column chromatography (hexane–EtOAc, 60:40) gave 15 as a yellow solid (1.2 g, 48% yield); mp 126-129 °C; IR (cm⁻¹): 3355 (NH), 1727 (CO₂R), 1682 (CONH); NMR ¹H (CDCl₃) δ : 8.28 (1H, brs, NH_{indol}), 7.93 (2H, d, *J*= 8.6 Hz, H_{Ar}), 7.74 (2H, d, *J*= 8.6 Hz, H_{Ar}), 7.54 (1H, dd, *J*= 8.0, 0.8 Hz, H_{Ar}), 7.36 (1H, dt, *J*= 8.2, 0.8 Hz, H_{Ar}), 7.19 (1H, ddd, *J*= 8.0, 7.2, 0.8 Hz, H_{Ar}), 7.00 (1H, d, 2.4 Hz, H_{Ar}), 6.74 (1H, d, *J*= 7.6 Hz, NH), 5.15 (1H, dt, *J*= 7.6, 5.2 Hz, H_a), 3.75 (3H, s, CH₃O), 3.49 (1H, dd, *J*= 15.2, 5.2 Hz, H_β), 3.44 (1H, dd, *J*= 15.2, 5.2 Hz, H_β⁻), 2.61 (3H, s, CH₃CO); NMR ¹³C (CDCl₃) δ : 197.7 (CO), 172.4 (COOR), 166.1 (CON), 139.4 (C_{Ar}), 137.8 (C_{Ar}), 136.3 (C_{Ar}), 128.6 (C_{Ar}), 127.8 (C_{Ar}), 127.6 (C_{Ar}), 123.0 (C_{Ar}), 122.6 (C_{Ar}), 120.0 (C_{Ar}), 118.7 (C_{Ar}), 111.6 (C_{Ar}), 110.0 (C_{Ar}), 53.8 (C_a), 52.7 (CH₃O), 27.7 (C_β), 27.0 (CH₃CO). HRMS-FAB calcd. for C₂₁H₂₁N₂O₄ [M+H]⁺: 365.1501, found: 365.1491.

N-(3,4-dimethoxybenzoyl)-L-tryptophan methyl ester (16)

Purification by column chromatography (hexane–EtOAc, 60:40) gave 16 as a white solid (1.2 g, 84% yield); mp 118–123 °C; IR (cm⁻¹): 3387 (NH), 1741 (CO₂R), 1627 (CONH); NMR ¹H (CDCl₃) δ : 8.45 (1H, brs, NH_{indol}), 7.55 (1H, d, *J*= 8.0 Hz, H_{Ar}), 7.33 (1H, dd, *J*= 8.4, 0.8 Hz, H_{Ar}), 7.27 (1H, *d*, *J*= 2.0 Hz, H_{Ar}), 7.19-7.15 (2H, m, H_{Ar}), 7.08 (1H, ddd, *J*= 7.6, 6.8, 1.2 Hz, H_{Ar}), 6.97 (1H, d, *J*= 2.4 Hz, H_{Ar}), 6.75 (1H, d, *J*= 8.4 Hz, H_{Ar}), 6.63 (1H, d, *J*= 8.0 Hz, NH), 5.13 (1H, dt, *J*= 8.0, 5.2 Hz, H_α), 3.87 (3H, s, CH₃OAr), 3.80 (3H, s, CH₃OAr), 3.72 (3H, s, CH₃O), 3.46 (1H, dd, *J*= 14.8, 5.2 Hz, H_β), 3.41 (1H, dd, *J*= 14.8, 5.2 Hz, H_β); NMR ¹³C (CDCl₃) δ : 172.7 (COOR), 167.7 (CON), 152.0 (C_{Ar}), 149.0 (C_{Ar}), 136.3 (C_{Ar}), 127.8 (C_{Ar}), 120.0 (C_{Ar}), 119.8 (C_{Ar}), 118.7 (C_{Ar}), 111.5 (C_{Ar}), 110.5 (C_{Ar}), 110.3 (C_{Ar}), 110.0 (C_{Ar}), 56.1 (CH₃OAr), 56.0 (CH₃OAr), 53.7 (C_α), 52.6 (CH₃O), 27.7 (C_β). HRMS-FAB calcd. for C₂₁H₂₃N₂O₅ [M+H]⁺: 383.1607, found: 383.1643.

N-(4-hydroxy-3,5-dimethoxybenzoyl)-L-tryptophan methyl ester (17)

Purification by column chromatography (EtOAc–hexane, 60:40) gave 17 as a yellow solid (203 mg, 51% yield); mp 98-102 °C; IR (cm⁻¹): 3377 (NH), 1731 (CO₂R), 1642 (CONH); NMR ¹H (CDCl₃) δ : 8.83 (1H, brs, NH_{indol}), 7.55 (1H, d, *J*= 8.0 Hz, H_{Ar}), 7.30 (1H, d, *J*= 8.4 Hz, H_{Ar}), 7.17-6.99 (2H, m, H_{Ar}), 6.95 (1H, d, *J*= 1.6 Hz, H_{Ar}), 6.83 (2H, s, H_{Ar}), 6.67 (1H, d, *J*= 8.0 Hz, NH), 6.11 (1H, sa, OH), 5.10 (1H, dt, *J*= 8.0, 5.2 Hz, H_a), 3.71 (3H, s, CH₃OAr), 3.67 (6H, s, CH₃OAr, CH₃O), 3.43 (1H, dd, *J*= 14.8, 5.2 Hz, H_β), 3.38 (1H, dd, *J*= 14.8, 5.2 Hz, H_β[,]; NMR ¹³C (CDCl₃) δ : 172.8 (COOR), 167.1 (CON), 146.8 (C_{Ar}), 136.2 (C_{Ar}), 136.3 (C_{Ar}), 127.8 (C_{Ar}), 124.7 (C_{Ar}), 122.1 (C_{Ar}), 119.7 (C_{Ar}), 118.4 (C_{Ar}), 111.6 (C_{Ar}), 109.6 (C_{Ar}), 104.4 (C_{Ar}), 56.3 (CH₃OAr), 53.9 (C_α), 52.5 (CH₃O), 27.4 (C_β). HRMS-FAB calcd. for C₂₁H₂₃N₂O₆ [M+H]⁺: 399.1556, found: 399.1577.

N-Benzoyl-L-isoleucine methyl ester (19)

Purification by column chromatography (hexane–EtOAc, 80:20) gave 19 as a white solid (72 mg, 29% yield); mp 90.4-91.5 °C; Characterization of 19 has been previously reported in the literature [4]; IR (cm⁻¹): 3330 (NH), 1719 (CO₂R), 1633 (CONH); NMR ¹H (400 MHz, CDCl₃) δ: 7.82–7.79 (2H, m, H_{Ar}), 7.54–7.43 (3H, m, H_{Ar}), 6.65 (1H, d, *J*= 8.4 Hz, NH), 4.83 (1H, dd, *J*= 8.4, 5.2 Hz, H_α), 3.78 (3H, s, CH₃O), 2.07-1.97 (1H, m, H_β), 1.59-1.48 (1H, m, H_δ), 1.32-1.21 (1H, m, H_δ⁻), 0.97 (1H, d, *J*= 6.9 Hz, H_γ), 0.95 (3H, t, *J*= 7.4 Hz, H_ε); NMR ¹³C (101 MHz, CDCl₃) δ: 172.8 (COOR), 167.3 (CON), 134.3 (C_{Ar}), 131.9 (C_{Ar}), 128.8 (C_{Ar}), 127.2 (C_{Ar}), 57.0 (CH₃O), 52.4 (C_α), 38.5 (C_β), 25.6 (C_δ), 15.7 (C_γ), 11.8 (C_ε). ESI-HRMS calcd. for C₁₃H₁₈NO₃ [M+H]⁺: 250.1443, found: 250.1449.

General Procedure for the synthesis of N-benzoylaminoacids (8, 18, 20-23)

A solution of the corresponding α -aminoester (1 mmol), benzoic anhydride (1 mmol) and AcOH (25 mL) was refluxed for 2 h. After cooling the solution, the solvent was evaporated under reduced pressure and the residue was purified as indicated in each case.

Characterization data of compounds 8, 18, 20-23

N-Benzoyl-L-valine (8)

Purification by column chromatography (hexane-EtOAc, 70:30) gave 8 as a solid (155 mg, 70% yield); mp 127.0–127.7 °C; Characterization of 8 has been previously reported in the literature [5]. IR (cm⁻¹):

3297 (OH), 2952, 1649 (CO₂H), 1633 (CONH), 1520; NMR ¹H (400 MHz, CDCl₃) δ : 8.57 (1H, s, COOH), 7.82-7.76 (2H, m, H_{Ar}), 7.54-7.42 (3H, m, H_{Ar}), 6.74 (1H, d, *J*= 8.4 Hz, NH), 4.79 (1H, dd, *J*= 8.4, 4.8 Hz, H_a), 2.42-2.27 (1H, m, H_β), 1.04 (3H, d, *J*= 6.9 Hz, H_γ), 1.03 (3H, d, *J*= 6.9 Hz, H_γ); NMR ¹³C (101 MHz, CDCl₃) δ : 176.0 (COOH), 168.2 (CON), 134.0 (C_{Ar}), 132.1 (C_{Ar}), 128.9 (C_{Ar}), 127.3 (C_{Ar}), 57.7 (C_a), 31.5 (C_β), 19.2 (C_γ), 18.0 (C_γ). ESI-HRMS calcd. for C₁₂H₁₄NO₃ [M-H]⁻: 220.0974, found: 220.0965.

N-Benzoyl-L-tryptophan (18)

Purification by column chromatography (hexane–AcOEt, 70:30) gave 18 as oil (231 mg, 75% yield); Characterization of 18 has been previously reported in the literature [5]; IR (cm⁻¹): 3493 (OH), 3045, 2926, 1726 (CO₂H), 1626 (CONH); NMR ¹H (400 MHz, CDCl₃) δ : 8.47 (1H, s, NH), 7.95 (1H, brs, COOH), 7.54-7.45 (3H, m, H_{Ar}), 7.34-7.28 (1H, m, H_{Ar}), 7.22-7.14 (3H, m, H_{Ar}, NH), 7.06 (1H, m, H_{Ar}), 6.96 (1H, m, H_{Ar}), 6.86 (2H, d, *J* = 7.2 Hz, H_{Ar}), 5.13–4.97 (1H, m, H_{\alpha}), 3.39 (1H, dd, *J* = 15.2, 5.4 Hz, H_{\beta}), 3.33 (1H, dd, *J* = 15.2, 5.4 Hz, H_{\beta}); NMR ¹³C (101 MHz, CDCl₃) δ : 175.3 (COOH), 168.3 (CON), 136.3 (C_{Ar}), 133.2 (C_{Ar}), 132.1 (C_{Ar}), 128.6 (C_{Ar}), 127.8 (C_{Ar}), 127.3 (C_{Ar}), 123.6 (C_{Ar}), 122.2 (C_{Ar}), 119.7 (C_{Ar}), 118.6 (C_{Ar}), 111.6 (C_{Ar}), 109.4 (C_{Ar}), 54.1 (C_{\alpha}), 27.2 (C_{\beta}). ESI-HRMS calcd. for C₁₈H₁₅N₂O₃ [M-H]⁻: 307.1083, found: 307.1078.

N-Benzoyl-L-isoleucine (20)

20

Purification by column chromatography (hexane–AcOEt, 50:50) gave 20 as a white solid (73 mg, 31% yield); mp 119.0–120.0 °C; Characterization of 20 has been previously reported in the literature [5]; IR (cm⁻¹): 3393 (OH), 1733 (CO₂H), 1620 (CONH); NMR ¹H (400 MHz, CDCl₃) δ: 9.70 (1H, brs, COOH), 7.79 (2H, dd, *J*= 7.8, 1.4 Hz, H_{Ar}), 7.56–7.36 (3H, m, H_{Ar}), 6.86 (1H, d, *J*= 8.7 Hz, NH), 6.77 (1H, d, *J*= 8.7 Hz, NH), 4.93 (1H, dd, *J*= 8.7, 4.8 Hz, H_α), 4.83 (1H, dd, *J*= 8.8, 4.8 Hz, H_α), 2.14–2.01 (1H, m, H_β), 1.62–1.46 (1H, m, H_δ), 1.33–1.20 (1H, m, H_δ·), 1.00–0.94 (6H, m, H_γ, H_ε); NMR ¹³C (101 MHz, CDCl₃) δ: 176.4 (COOH), 175.9 (COOH), 168.3 (CON), 168.1 (CON), 134.0 (C_{Ar}), 133.9 (C_{Ar}), 132.1 (C_{Ar}), 128.8 (C_{Ar}), 127.3 (C_{Ar}), 57.1 (C_α), 56.0 (C_α), 38.1 (C_β), 38.0 (C_β), 26.5 (C_δ), 25.4 (C_δ), 15.6 (C_γ), 14.8 (C_γ), 11.9 (C_ε), 11.8 (C_ε). ESI-HRMS calcd. for C₁₃H₁₆NO₃ [M-H]⁻: 234.1130, found: 234.1073.

N-Benzoyl-L-leucine (21)

Purification by column chromatography (hexane–AcOEt, 70:30) gave 21 as oil (68 mg. 29% yield); Characterization of 21 has been previously reported in the literature [5]; IR (cm⁻¹): 3323 (OH), 1713 (CO₂H), 1620 (CONH); NMR ¹H (400 MHz, CDCl₃) δ : 7.76 (2H, dd, *J*= 8.4, 1.4 Hz, H_{Ar}), 7.48–7.34 (3H, m, H_{Ar}), 7.24 (1H, brs, COOH), 7.07 (1H, d, *J*= 8.2 Hz, NH), 4.80 (1H, m, H_a), 1.78–1.67 (3H, m, H_β, H_γ), 0.94 (3H, d, *J*= 5.9 Hz, H_δ), 0.93 (3H, d, *J*= 5.9 Hz, H_δ[•]); NMR ¹³C (101 MHz, CDCl₃) δ : 176.4 (COOH), 168.4 (CON), 133.6 (C_{Ar}), 132.0 (C_{Ar}), 128.7 (C_{Ar}), 127.3 (C_{Ar}), 51.6 (C_a), 41.2 (C_β), 25.1 (C_γ), 23.0 (C_δ), 22.0 (C_δ[•]). ESI-HRMS calcd. for C₁₃H₁₆NO₃ [M-H]⁻: 234.1130, found: 234.1138.

N-Benzoyl-L-alanine (22)

Purification by column chromatography (hexane–AcOEt, 50:50) gave 22 as a solid (137 mg. 71% yield); mp 121.2–122.7 °C; Characterization of 22 has been previously reported in the literature [5]. IR (cm⁻¹): 3376 (OH), 1726 (CO₂H), 1593, 1540; NMR ¹H (400 MHz, CDCl₃) δ : 7.83–7.78 (2H, m, H_{Ar}), 7.54–7.38 (3H, m, H_{Ar}), 4.82 (1H, brs, NH) 4.72 (1H, q, *J*= 7.2 Hz, H_a), 1.53 (3H, d, *J*= 7.2 Hz, H_β); NMR ¹³C (101 MHz, CDCl₃) δ : 175.1 (COOH), 167.8 (CON), 133.6 (C_{Ar}), 131.8 (C_{Ar}), 128.5 (C_{Ar}), 127.1 (C_{Ar}), 127.0 (C_{Ar}), 48.5 (C_a), 17.9 (C_β). ESI-HRMS calcd. for C₁₀H₁₀NO₃ [M-H]⁻: 192.0661, found: 192.0664.

N-Benzoyl-L-phenylalanine (23)

23

Purification by column chromatography (hexane–AcOEt, 70:30) gave 23 as a white solid (126 mg, 47% yield); mp 141-141.5 °C; Characterization of 23 has been previously reported in the literature [5]; IR (cm⁻¹): 3337 (OH), 1713 (CO₂H), 1633 (CONH), 1527; NMR ¹H (400 MHz, CDCl₃) δ : 8.69 (1H, s, COOH), 7.70–7.66 (2H, m, H_{Ar}), 7.53–7.37 (3H, m, H_{Ar}), 7.31–7.18 (5H, m, H_{Ar}), 6.64 (1H, d, *J*= 7.4 Hz, NH), 5.10 (1H, dt, *J*= 7.4, 5.8 Hz, H_a), 3.35 (1H, dd, *J*= 14.0, 5.8 Hz, H_β), 3.26 (1H, dd, *J*= 14.0, 5.8 Hz, H_β-); NMR ¹³C (101 MHz, CDCl₃) δ : 175.3 (COOH), 167.9 (CON), 135.8 (C_{Ar}), 133.6 (C_{Ar}), 132.3 (C_{Ar}), 129.6 (C_{Ar}), 128.9 (C_{Ar}), 127.5 (C_{Ar}), 127.3 (C_{Ar}), 53.8 (C_a), 37.5 (C_β). ESI-HRMS calcd. for C₁₆H₁₄NO₃ [M-H]⁻: 268.0974, found: 268.0974.

Active Site Validation

The active site of chitinase (PDB ID: 5WV9) was validated with the co-crystallized native ligand 2acetamido-2-deoxy- β -d-glucopyranose. Comparison of the poses obtained by the AutoDock Vina program with those of the crystallized protein yielded root mean square deviation (RMSD) = 2.094 Å, indicating an appropriate optimization score. These values are small and support binding at the simulation site with the original orientation of the co-crystallized molecule (Fig. S1).

Fig. S1. Ligand-binding site of chitinase protein with co-crystalized native 2-acetamido-2-deoxy- β -d-glucopyranose (green) and 2-acetamido-2-deoxy- β -d-glucopyranose as posed calculated by the Autodock Vina program (pink).

			No of I	I Dogid	uo Doconto		Dond	Long	th Do	oking So		M
chitinase.												
Table 1.	Binding	affinity	for the	interaction	of glucose	and	tested	the 1	N-benzoyl	amino	derivatives	with

Compound	No. of H-	Residue Receptor	Bond Length	Docking Score	<i>Ki</i> (µM)
Compound	Bonds	H-Bonds	(Å)	(kcal/mol)	а
2 acatamida 2		A/ARG`342/NH1	2.4		
2-acetamuo-2-	4	A/ASP`286/OD2	2.3	65	16.50
deoxy-p-d-	4	A/TYR`285/OH	2.3	-0.3	10.32
giucopyranose		A/TRP`176/N`B	3.4		
1	1	A:TYR340:OH	3.09	-7.90	1.54
		A:TYR285:OH	3.21		
2	3	A:ASP286:OD2	2.65	-7.80	1.83
		A:ASP215:OD2	3.42		
		A:GLY175:CA	3.66		
3	3	A:TRP176:CD1:B	3.38	-7.73	2.06
		A:ASP215:OD2	.5:OD2 3.47		
		A:TRP176:N	2.06		
		A:TRP176:N:B	2.90		
		A:TYR285:OH	2.97		
4	6	A:ARG342:NH1	5.04 2.24	-7.9	1.62
		A:MET283:SD	5.54 2.19		
		A:ASP286:OD2	5.10 2.40		
		A:TRP433	2.40		
5	1	A:TRP176:N:B	4.17	-7.87	1.62
		A:TYR218:OH	3.34		
6	3	A:GLY175:CA	2.80	-8.51	0.55
		A:ARG342:NH1	3.61		
7	2	A:ARG342:NH1	3.33	0 51	0.55
1	2	A:TRP433:NE1	3.22	-8.31	0.55
8	1	A:TRP176:N:B	2.19	-8.24	0.87
9	1	A:GLU217:OE1	3.35	-10.20	0.03
10	4	A:TRP176:N	3.33	0.00	0.05
10	4	A:TRP176:N:B	3.34	-9.90	0.05

		A:TRP176:N:B	2.04		
		A:GLY175:CA	3.48		
11	2	A:TRP176:N	2.53	0.80	0.05
11	2	A:TRP176:N	2.54	-9.80	0.05
12	2	A:TYR218:OH	2.63	10.1	0.03
12	2	A:ASP215:OD2	3.54	-10.1	0.05
		A:TRP176:N:B	2.78		
13	3	LIG1:O	3.63	-10.50	0.02
		A:GLU370:OE1	3.56		
14	2	A:ASP286:OD2	2.75	10.40	0.02
14		A:TRP176:CD1:B	3.56	-10.40	0.02
		A:TRP433:NE1	3.34		
15	4	A:GLY175:CA	3.70	-9.81	0.06
15		A:TYR218:OH	3.55	2.01	0.00
		A:ASP286:OD2	3.43		
16	1	A:TRP176:N:B	2.50	-9.79	0.06
17	1	A:TRP176:N:B	2.61	-9.69	0.07
		A:TRP176:N:B	2.49		
18	3	A:ASP286:OD2	2.44	-10.40	0.02
		A:TYR340:OH	2.07		
19				-10.40	0.02
20	1	A:TRP176:N:B	2.21	-8.03	1.24
21	1	A:GLU217:OE2	3.70	-8.03	1.24
22	1	A:TRP176:N:B	2.72	-7.32	4.12
23	1	A:TYR340:OH	3.09	-9.40	0.12

^a $Ki = e^{-\Delta G/RT} \Delta G = Gibbs$ free energy; R = 1.9872 cal/mol.K; T = 298.15 °K.

Methodology

Validation of Active Site

The active site on chitinase was validated using glucose as the native ligand (PDB: 5WV9). RMSD was set to less than 2.094 Å to determine the best docking position between chitinase and the ligands using Autodock Vina [7]. The validation was performed with 1000 poses, ten replicates for each, selecting the lowest energy value. Protein visualization and overlap were carried out using Pymol 3.1 (Schrödinger, San Diego; http://www.pymol.org/ was used for the protein visualization and overlap).

Molecular Docking

The docking of with each ligand (*N*-benzoyl amino derivatives) was simulated using the program AutoDock Vina, which has been used to estimate the conformation of protein–ligand complexes.

All calculations for protein-fixed ligand-flexible docking were analyzed using the Lamarckian Genetic Algorithm (LGA) method. The docking site on chitinase was defined by establishing a grid box using Pymol 3.1. The grid box size for the coordinates x, y, and z was 60 Å, with a grid spacing of 0.375 Å, centered on x = -19.693, y = 18.902, and z = 25.671 Å. The best conformation was chosen based on the lowest binding energy after the docking search was completed. In the AutoDock Vina configuration files, the parameter number modes were set to 1000 modes and exhaustiveness to 1000. And for each run, the best pose was saved. The average binding energy for the best poses was used as the final binding energy value. This process was repeated ten times.

 Table 2. Validation table.

RMSD			ARG342NH1		
repetition	60	50	40	30	20
1	-6.5	-6.5	-6.6	-6.5	-6.4
1	2.368	2.306	2.376	2.426	2.17
2	-6.5	-6.5	-6.6	-6.5	-6.3
2	2.465	2.254	2.311	2.493	2.334
2	-6.5	-6.5	-6.6	-6.6	-6.3
3	2.284	2.329	2.288	2.36	2.346
4	-6.5	-6.5	-6.6	-6.5	-6.2
4	2.356	2.348	2.381	2.233	2.21
F	-6.5	-6.5	-6.6	-6.5	-6.3
3	2.385	2.33	2.37	2.334	2.493
6	-6.5	-6.5	-6.6	-6.5	-6.3
0	2.453	2.396	2.157	2.342	2.362
7	-6.6	-6.5	-6.6	-6.5	-6.3
/	2.331	2.427	2.417	2.327	2.41
0	-6.5	-6.5	-6.5	-6.5	-6.3
0	2.319	2.404	2.434	2.286	2.248
0	-6.5	-6.5	-6.6	-6.5	-6.3
9	2.474	2.244	2.561	2.363	2.389
10	-6.5	-6.5	-6.6	-6.5	-6.3
10	2.499	2.33	2.11	2.367	2.389
	2.393	2.337	2.341	2.353	2.335

 Table 3. Validation table.

RMSD			ASP215OD2	2	
repetition	60	50	40	30	20
1	-6.5	-6.5	-6.6	-6.5	-6.5
1	2.128	2.319	2.555	2.051	1.98
2	-6.6	-6.5	-6.6	-6.5	-6.5
2	2.094	2.34	2.492	2.052	2.021
2	-6.6	-6.5	-6.5	-6.5	-6.5
5	2.502	2.103	2.608	2.317	2.228
4	-6.5	-6.5	-6.5	-6.5	-6.5
4	2.405	2.249	2.56	2.04	2.032
5	-6.5	-6.5	-6.6	-6.5	-6.5
5	2.39	2.269	2.6	2.142	2.366
6	-6.5	-6.5	-6.5	-6.5	-6.5
0	2.114	2.073	2.295	2.099	2.26
7	-6.5	-6.5	-6.5	-6.5	-6.5
/	2.187	2.357	2.597	2.231	2.209
o	-6.5	-6.5	-6.5	-6.5	-6.5
0	2.136	2.116	2.351	2.258	2.221
0	-6.5	-6.5	-6.5	-6.5	-6.5
9	2.304	2.134	2.635	2.098	2.098
10	-6.5	-6.5	-6.5	-6.5	-6.5
10	2.286	2.272	2.457	2.113	2.038
	2.255	2.223	2.515	2.140	2.145

Table 4.	Validation table.	

RMSD			ASP286OD2		
repetition	60	50	40	30	20
1	-6.6	-6.6	-6.5	-6.6	-6.6
1	2.297	2.271	2.401	2.241	2.319
2	-6.6	-6.6	-6.5	-6.6	-6.6
2	2.404	2.25	2.449	2.315	2.284
2	-6.6	-6.6	-6.5	-6.6	-6.6
3	2.307	2.168	2.67	2.19	2.464
4	-6.6	-6.6	-6.5	-6.5	-6.6
4	2.167	2.413	2.342	2.16	2.211
5	-6.6	-6.6	-6.5	-6.6	-6.6
5	2.367	2.019	2.402	2.225	2.269
6	-6.5	-6.6	-6.5	-6.6	-6.6
0	2.367	2.372	2.283	2.417	2.32
7	-6.6	-6.5	-6.5	-6.6	-6.6
7	2.481	2.397	2.438	2.341	2.363
0	-6.6	-6.6	-6.5	-6.6	-6.6
0	2.34	2.158	2.512	2.38	2.251
0	-6.6	-6.6	-6.5	-6.6	-6.6
9	2.134	2.28	2.524	2.393	2.311
10	-6.6	-6.6	-6.5	-6.6	-6.6
10	2.356	2.455	2.762	2.243	2.252
	2.322	2.278	2.478	2.291	2.304

Table 5. Validation table.

RMSD			GLU217OE	2	
repetition	60	50	40	30	20
1	-6.5	-6.5	-6.5	-6.5	-6.5
1	2.356	2.449	2.581	2.342	2.191
2	-6.5	-6.5	-6.5	-6.5	-6.5
2	2.215	2.428	2.095	2.206	2.194
2	-6.5	-6.5	-6.5	-6.5	-6.5
3	2.321	2.329	2.334	2.34	2.187
4	-6.5	-6.5	-6.5	-6.5	-6.5
4	2.482	2.203	2.375	2.298	2.177
5	-6.5	-6.5	-6.5	-6.5	-6.5
3	2.237	2.331	2.516	2.343	2.35
6	-6.5	-6.5	-6.5	-6.5	-6.5
0	2.338	2.432	2.407	2.309	2.342
7	-6.5	-6.5	-6.5	-6.5	-6.5
/	2.385	2.311	2.365	2.162	2.452
0	-6.5	-6.5	-6.5	-6.5	-6.5
0	2.38	2.517	2.509	2.326	2.378
0	-6.5	-6.5	-6.5	-6.5	-6.5
7	2.342	2.428	2.35	2.155	2.312
10	-6.5	-6.5	-6.5	-6.5	-6.5
10	2.256	2.175	2.109	2.247	2.434
	2.331	2.360	2.364	2.273	2.302

No	Δ G1	$\Delta G2$	ΔG3	$\Delta G4$	Δ G5	$\Delta G6$	Δ G7	Δ G8	Δ G9	ΔG1	mean	Ki
•										0	ΔG	µg/mol
1	-7.9	-7.9	-7.9	-7.9	-7.9	-7.9	-7.9	-7.9	-7.9	-7.9	-7.90	1.54
2	-7.8	-7.8	-7.8	-7.8	-7.8	-7.8	-7.8	-7.8	-7.8	-7.8	-7.80	1.83
3	-7.7	-7.8	-7.8	-7.8	-7.7	-7.7	-7.7	-7.7	-7.7	-7.7	-7.73	2.06
4	-7.8	-7.8	-7.8	-7.9	-7.8	-7.9	-7.9	-7.9	-7.9	-7.9	-7.87	1.62
5	-7.9	-7.8	-7.9	-7.8	-7.8	-7.9	-7.9	-7.9	-7.9	-7.9	-7.87	1.62
6	-8.5	-8.5	-8.5	-8.6	-8.5	-8.5	-8.5	-8.5	-8.5	-8.5	-8.51	0.55
7	-8.5	-8.5	-8.5	-8.6	-8.5	-8.5	-8.5	-8.5	-8.5	-8.5	-8.51	0.55
8	-8.2	-8.2	-8.2	-8.3	-8.3	-8.3	-8.3	-8.2	-8.2	-8.2	-8.24	0.87
9	-	-	-	-	-	-	-	-	-	-10.2	-10.20	0.03
	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2			
10	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-9.9	-9.90	0.05
11	-9.8	-9.8	-9.8	-9.8	-9.8	-9.8	-9.8	-9.8	-9.8	-9.8	-9.8	0.05
12	-	-	-	-	-	-	-	-	-	-10.1	-10.1	0.03
	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1			
13	-	-	-	-	-	-	-	-	-	-10.5	-10.50	0.02
	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5			
14	-	-	-	-	-	-	-	-	-	-10.4	-10.40	0.02
	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4			
15	- 10.6	-9.6	-9.6	-	-9.7	-9.6	-9.6	-9.6	-9.6	-9.6	-9.81	0.06
16	-9.8	_9.9	-96	-9.8	-9.8	-9.8	-96	-99	-9.8	_9.9	-9 79	0.06
17	-9.7	-9.6	-9.7	-9.7	-9.7	-9.7	-9.7	-9.7	-9.7	-9.7	-9.69	0.07
10	9.1	7.0	2.1	2.1	2.1	2.1	2.1	2.1	7.1	10.4	10.40	0.07
18	- 10.4	- 10.4	- 10.4	- 10.4	- 10.4	- 10.4	- 10.4	- 10.4	- 10.4	-10.4	-10.40	0.02
19	-	-	-	-	-	-	-	-	-	-10.4	-10.40	0.02
17	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.1	10.10	0.02
20	-8.0	-8.1	-8.1	-8.0	-8.0	-8.1	-8.0	-8.0	-8.0	-8.0	-8.03	1.24
21	-8.0	-8.1	-8.1	-8.0	-8.0	-8.1	-8.0	-8.0	-8.0	-8.0	-8.03	1.24
22	-7.3	-7.3	-7.3	-7.3	-7.4	-7.3	-7.3	-7.3	-7.4	-7.3	-7.32	4.12
23	-9.4	-9.4	-9.4	-9.4	-9.4	-9.4	-9.4	-9.4	-9.4	-9.4	-9.40	0.12

Table 6. Means energy free Gibbs for all N-benzoyl amino derivatives.

Tabla 7. Figure Supplementary Material.

References

- 1. Yoo, W-J.; Li, C-J. J. Am. Chem. Soc. 2006, 128, 13064–13065. DOI: https://doi.org/10.1021/ja064315b
- 2. Karnik, A. V.; Kamath, S. S. J. Org, Chem. 2007, 19, 7435–7438. DOI: https://doi.org/10.1021/jo070962p
- Trevitt, C. R.; Craven, C. J.; Milanesi, L.; Syson, K.; Mattinen, M-L.; Perkins, J.; Annila, A.; Hunter, C. A.; Waltho J. P.; *Chem. Biol.* 2005, *12*, 89–97. DOI: <u>https://doi.org/10.1016/j.chembiol.2004.11.007</u>
- Anderson, Z, J.; Hobson, C.; Needley, R.; Song, L.; Perryman, M. S.; Kerby, P.; Fox, D. J. Org. Biomol. Chem. 2017, 15, 9372–9378.DOI: <u>https://doi.org/10.1039/C7OB01995E</u>
- 5. Duddeck, H.; Magn. Reson. Chem. 2009, 47, 222-227. DOI: https://doi.org/10.1002/mrc.2374
- Tatar, E.; Küçükgüzel, I.; Daelemans, D.; Talele, T. T.; Kaushik-Basu, N.; De Clercq, E. Pannecouque, C. Arch. Pharm. Chem. Life Sci. 2013, 346, 140–153. DOI: <u>https://doi.org/10.1002/ardp.201200311</u>
- Cob-Calan, N. N.; Chi-Uluac, L. A.; Ortiz-Chi, F.; Cerqueda-García, D.; Navarrete-Vázquez G.; Ruiz-Sánchez, E.; Hernández-Núñez, E. *Molecules*. 2019 24, 3387. DOI: <u>https://doi.org/10.3390/molecules24183387</u>

Fig. S2. ¹H NMR of *N*-Benzoyl-L-valine methyl ester (1).

Fig. S4. ¹H NMR de *N*-(3-methoxybenzoyl)-L-valine methyl ester (2).

Fig. S5. ¹H NMR of *N*-(3,4-dimethoxybenzoyl)-L-valine methyl ester (3).

26

Fig. S9. ¹H NMR of *N*-Benzoyl-D-valine methyl ester (5).

Fig. S11. ¹H NMR of *N*-(4-methylbenzoyl)-L-valine methyl ester (6).

Fig. S12. ¹H NMR of *N*-(2,4,6-trimethylbenzoyl)-L-valine methyl ester (7).

Fig. S14. ¹H NMR of *N*-Benzoyl-L-valine (8).

Fig. S16. ¹H NMR of *N*-Benzoyl-L-tryptophan methyl ester (9).

Fig. S18. ¹H NMR of *N*-(2-hydroxybenzoyl)-L-tryptophan methyl ester (10).

Supplementary Information

Fig. S22. ¹H NMR of *N*-(2-chloronicotinoyl)-L-tryptophan methyl ester (12).

Fig. S24. ¹H NMR of *N*-(4-methylbenzoyl)-L-tryptophan methyl ester (13).

Fig. S27. ¹H NMR of *N*-(4-acetylbenzoyl)-L-tryptophan methyl ester (15).

Fig. S29. ¹H NMR of *N*-(3,4-dimethoxybenzoyl)-L-tryptophan methyl ester (16).

Supplementary Information

8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 Fig. S33. ¹H NMR of *N*-Benzoyl-L-tryptophan (18).

Fig. S35. ¹H NMR of *N*-Benzoyl-L-isoleucine methyl ester (19).

Fig. S37. ¹H NMR of *N*-Benzoyl-L-isoleucine (20).

. 170

. 160

. 150

Fig. S40. ¹³C NMR of *N*-Benzoyl-L-leucine (21).

. 120

. 50

, 40

. 30

Fig. S43. ¹H NMR of *N*-Benzoyl-L-phenylalanine (23).

Fig. S44. ¹³C NMR of *N*-Benzoyl-L-phenylalanine (23).