Benzekri, Benhdidou, Hamia, Serrar, Boukhris, Sallek, Hassikou, and Souizi: A Green and Simple Protocol one-pot Biginelli Condensation using Dicalcium Phosphate as Reusable Catalyst



Introduction

Multicomponent reactions (MCRs) are of great importance in both organic and medicinal chemistry for various reasons [(1)]. They offer significant advantages compared to conventional synthesis. Thus, MCR condensations involve three or more compounds that react in a one-pot reaction to form a new product. The Biginelli reaction is one of the most important multicomponent reactions for the synthesis of dihydropyrimidinones, consisting in the acid catalyzed cyclocondensation reaction of an aldehyde, a b-ketoester and a urea (or thiourea) [(2)]. Over the past decade, dihydropyrimidin-2-ones (DHPMs) and derivatives have attracted considerable attention in organic and medicinal chemistry because of their pharmacological and therapeutic properties [(3)]. Some derivatives have emerged due to their potential antiviral, antitumor, antibacterial and anti-inflammatory activities [(3-5)]. More recently, functionalized DHPMs are considered potent calcium channel blockers [(6)], antihypertensive agents [(7)], adrenergic antagonists [(8)] and neuropeptide Y (NPY) antagonists [(9)]. The original Biginelli protocol for the DHMPs preparation consisted of heating a mixture of the three components (1equiv of an aldehyde 1, 1 equiv of β-keto ester 2, and 1.5 equiv of urea 3), in ethanol with a catalytic amount of HCl [(2,4)]. This procedure leads in one-pot reaction to the desired DHMPs, but in low yields, particularly for substituted aromatic and aliphatic aldehydes [(7)].

The Biginelli condensation is also performed using Lewis acids such as BF3OEt2, polyphosphate esters, and reagents like InCl3, Mn(OAc)3, trimethylsilyltriflate, LaCl3·7H2O, CeCl3·7H2O, LiClO4, Yb(OTf)3, ZrCl4, or ZrOCl2, among others [(8,10-24)], STO/Al-P [(25)]. FeCl3/Nanopore silica [(26)], PhB(OH)2 [(27)], Cu(NH2SO3)2 [(28)], Fe3O4 nanoparticles [(29)], sulfonated carbon materials (SCMs) [(30)], N-acetyl glycine (NAG) [(31-32)], Yb(OTf)3 [(33)], 3-[(3-(trimethoxysilyl)propyl)thio]propane-1-oxy-sulfonic acid (TMSPTPOSA) [(34)], Fe(OTs)3·6H2O [(35)], 3-(2-carboxybenzoyl)-1-methyl-1H-imidazolium chloride [Cbmim]Cl [(36)], Boehmite nanoparticles [(37)], TiO2-CNTs [(38)] and H5PW10V2O40/Pip-SBA-15 [(39)]. However, many of these methods use longer reaction times, strong acidic conditions and stoichiometric amounts of catalysts.

In the present study, we report a green and valid procedure for the synthesis of 3,4-dihydro pyrimidin-2-ones via one-pot condensation of aromatic aldehydes, acetylacetone or ethyl acetoacetate and urea or thiourea in the presence of dicalcium phosphate dihydrate (DCPD) [(40)] as a heterogeneous catalyst.

Results and Discussion

Dicalcium phosphate dihydrate (DCPD) was synthesized by double decomposition of calcium nitrate tetrahydrate and ammonium dihydrogenophosphate. After 2 h of maturation, the suspension was filtered, washed and freeze dried. The appropriate physical methods which should be used to confirm the identity of the product are IR absorption spectroscopy, XRD, elemental analyses of calcium and phosphate concentrations, scanning electron microscopy, and specific surface by BET [(40)].

The choice of appropriate reaction conditions is important for a successful synthesis. To study the effect of catalyst on the reaction, the one-pot condensation of benzaldehyde 1a (1 mmol), acetylacetone 2 (1 mmol) and urea 3 (1.5 mmol) was chosen as a model reaction in the presence of 5 mol% dicalcium phosphate dihydrate (DCPD) at reflux conditions in EtOH (Scheme 1). The efficiency of the condensations was mainly affected by the amount of the catalyst. Biginelli reaction in the absence of catalyst (Table 1, entry 1) was found to be very slow and gave a poor yield of DHPM (39 % isolated) after a longer reaction time (45 min), while good results were obtained in the presence of DCPD. The optimal amount of the catalyst was 7 mol% (Table 1, entry 6), whereas a higher amount of the catalyst did not increase the yield noticeably (Table 1, entry 7).

Scheme 1

Synthesis of 3,4-dihydropyrimidin-2(1H)-one 4a catalyzed by dicalcium phosphate dihydrate (DCPD).

1870-249X-jmcs-61-03-00217-gf1.png

Table 1

Optimization of the reaction conditions.a

1870-249X-jmcs-61-03-00217-gt1.svg

[i] a Reaction conditions: benzaldehyde (1a) (1 mmol), acetylacetone (2a) (1 mmol), urea (3a) (1.5 mmol), DCPD, 10 mL solvent at reflux.

[ii] b Isolated yield.

In order to optimize the reaction conditions, various solvents such as EtOH, MeOH, butanol, isopropanol, CH3CN, AcOEt, THF and solvent-free conditions in the presence of DCPD as the catalyst were used (Table 1). Reaction in CH3CN and AcOEt gave low product yields even after 35 min (Table 1, entries 11 and 13). The yields were moderate in case of methanol, butanol, isopropanol, THF and solvent-free condition. The best results were obtained when the reaction was carried out in ethanol at reflux for 35 min in the presence of 7 mol% of catalyst (Table 1, entry 6).

After the condensation, the DCPD catalyst was filtered, washed with EtOH and dried in vacuum oven at 100 °C. The activity of the recovered catalyst did not decrease appreciably even after six consecutive runs, and no significant loss of conversion was observed, depicting the high stability of the catalyst under the reaction conditions (Table 2).

Table 2

Reusability of the catalyst in the synthesis of 3,4-dihydropyrimidin-2-one 4a.

1870-249X-jmcs-61-03-00217-gt2.svg

[i] a Isolated yields.

The generality of reaction was studied under optimal conditions by varying the structure of aldehyde (Scheme 2). As the data in Table 3 show, the catalyst was highly efficient for the reaction and all aromatic aldehydes (containing electron-withdrawing substituents or electron-donating substituents) afforded the corresponding products in high yields within short reaction times.

Scheme 2

Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones derivatives catalyzed by DCPD.

1870-249X-jmcs-61-03-00217-gf2.svg

Table 3

Synthesis of pyrimidin-2-ones/thiones in the presence of DCPD catalyst.

1870-249X-jmcs-61-03-00217-gt3.svg

[i] a Isolated yields.

The efficiency of our newly synthesized catalyst for the synthesis of 3,4-dihydropyrimidin-2-ones and 3,4-dihydropyrimidin-2-thiones 4 was further evaluated by comparing its performance with several other catalysts reported in the literature [(41-46)]. The results revealed that DCPD catalyst performed much more effectively than others in terms of providing a very short reaction time, mild conditions and a high yield of the product (Table 4).

Table 4

Comparison of the catalytic efficiency of DCPD with other catalysts in the preparation of 3,4-dihydropyrimidin-2-ones via Biginelli reaction.

1870-249X-jmcs-61-03-00217-gt4.svg

Conclusions

In summary, we have developed a convenient and highly efficient method for the synthesis of 3,4-dihydropyrimidin-2-ones and 3,4-dihydropyrimidin-2-thiones derivatives. The mild reaction conditions, experimental simplicity, straight forward purification procedures, excellent yields with short reaction times, as well as the application of green chemistry principles, are the advantages of this methodology.

Experimental Section

General procedure for the synthesis of catalyst (DCPD)

Dicalcium phosphate dihydrate (DCPD) was prepared by mixing 50 mL of a 0.3 M solution of ammonium dihydrogenophosphate ((NH4)H2PO4) with 50 mL of a 0.5 M solution of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) at room temperature. After 2 h of maturation, the precipitate was collected by vacuum filtration, washed with deionized water and freeze dried overnight.

Typical experimental procedure for the synthesis of compounds 4a-h

A mixture of urea or thiourea (1.5 mmol), substituted benzaldehyde (1 mmol), b-ketoester (1 mmol) and dicalcium phosphate dihydrate (DCPD) (7 mol %) in ethanol (10 ml) was heated to reflux for a specified time (TLC monitoring). Solid precipitated out from the reaction mixture was filtered, and recrystallized from methanol to afford pure 3,4-dihydropyrimidin-2(1H)-ones/thiones as yellow/white solids. The catalyst was recovered by vacuum filtration during recrystallization and treated by the procedure mentioned below.

The products prepared 4 are known compounds [(22-28)] and were confirmed by comparing the 1H NMR and 13C NMR data with authentic samples reported in the literature.

5-Acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2-one (4a). Mp 237-239°C (lit.[(26)] 238-239°C). 1H NMR (300 MHz, DMSO-d6): δ 9.16 (s, 1H, NH), 7.71 (s, 1H, NH), 7.20-7.30 (m, 5H, ArH), 5.12 (d, 1H, J = 3 Hz, CH), 2.22 (s, 3H, CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.1, 152.6, 148.8, 145.3, 128.8, 126.7, 99.7, 54.4, 28.3, 14.5.

Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine- 5-carboxylate (4b). Mp 208-210°C (lit.[(23)] 207-208°C). 1H NMR (300 MHz, DMSO-d6): δ 9.16 ( s, 1H, NH),7.71 (s, 1H, NH), 7.21-7.32 (m, 5H, ArH), 5.12 (s, 1H, CH), 3.97 (q, J = 7.4 Hz, 2H, OCH2), 2.22 (s, 3H, CH3), 1.10 (t, J = 7.4 Hz, 3H, OCH2CH3); 13C NMR (75MHz, DMSO-d6): δ 165.8, 152.6, 148.8, 145.4, 128.8, 127.7, 126.8, 99.7, 59.6 54.4, 18.2, 14.5.

Ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4c). Mp 212-214°C (lit.[(22)] 212-214°C). 1H NMR (300 MHz, DMSO-d6): δ 9.28 (s, 1H, NH), 7.73 (s, 1H, NH), 7.09-7.55 (m, 4H, ArH), 5.57 (s, 1H, CH), 3.89 (q, J = 7.3 Hz, 2H, OCH2), 2.27 (s, 3H, CH3), 0.98 (t, J = 7.3 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 161.6, 150.0, 141.3, 133.0, 130.7, 129.2, 128.4, 97,9, 59.6, 51.6, 18.1, 14,3.

Ethyl 4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4d). Mp 186-188°C (lit.[(25)] 186-188°C). 1H NMR (300 MHz, DMSO-d6): δ 9.22 (s, 1H, NH), 7.75 (s, 1H, NH), 7.21-7.38 (m, 4H, ArH), 5.12 (s, 1H, CH), 3.97 (q, J = 7.2 Hz, 2H, OCH2), 2.22 (s, 3H, CH3), 1.07 (t, J = 7.2 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.6, 152.4, 149.1, 144.2, 132.2, 128.8, 128.6, 99.3, 59.7, 53.8, 18.2, 14.5.

Ethyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4e). Mp 210-212°C (lit.[(22)] 211-212°C). 1H NMR (300 MHz, DMSO-d6): δ 9.32 (s, 1H, NH), 8.20 (d, J = 9 Hz, 2H),7.86 (s, 1H, NH), 7.47-7.56 (m, 4H, ArH), 5.26 (s, 1H, CH), 3.97 (q, J = 7.4 Hz, 2H, OCH2), 2.24 (s, 3H, CH3), 1.09 (t, J = 7.4 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.5, 158.1, 152.44, 149.8, 147.2, 139.6, 130.7, 128.1, 124.6, 98.7, 62.0, 59.9, 54.2, 18.3, 14.5.

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4f). Mp 200-202°C (lit.[(27)] 200-202°C). 1H NMR (300 MHz, DMSO-d6): δ 9.10 (s, 1H, NH), 7,64 (s, 1H, NH), 6.83-7.13 (m, 4H, ArH ), 5.07 (s, 1H, CH), 3.96 (q, J = 7.5 Hz, 2H, OCH2), 3.69 (s, 3H, OCH3), 2.21 (s, 3H, CH3), 1.07 (t, J = 7.5 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.9, 158.9, 152.6, 148.5, 137.5, 127.9, 114.2, 100.0, 59.6, 55.5, 53.8, 18.2, 14.6.

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5 carboxyl -ate (4g). Mp 153-155°C (lit.[(27)] 153°C). 1H NMR (300 MHz, DMSO-d6): δ 9.12 (s, 1H, NH), 7.63 (s, 1H, NH), 6.83-7.14 (m, 4H, ArH), 5,07 (s, 1H, CH), 3.96 (q, J = 7.3 Hz, 2H, OCH2), 3.69 (s, 3H, OCH3), 2.21 (s, 3H, CH3), 1.10 (t, J = 7.2 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.9, 158.9, 152.6, 148.5, 137.5, 137.5, 127.8, 114.2, 100.1, 59.6, 55.5, 53.8, 18.2, 14.5.

Ethyl 4-(4-(dimethylamino) phenyl)-6-methyl-2-oxo-1,2,3, 4-tetrahydropyrimidine-5-car-boxylate (4h). Mp 228-230°C (lit.[(28)] 228-230°C). 1H NMR (300 MHz, DMSO-d6): δ 9.06 (s, 1H, NH), 7.68 (s, 1H, NH), 6.61-7.56 (m, 4H, ArH), 5.01 (s, 1H, CH), 3.97 (q, J = 7.3 Hz, 2H, OCH2), 3.02 (s, 3H, NCH3), 3.02 (s, 3H, NCH3), 2.20 (s, 3H, CH3), 1.11 (t, J = 7.3 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 190.4, 165.9, 152.8, 150.2, 147.9, 133.0, 127.4, 112.7, 111.5, 100.4, 59.6, 53.8, 18.2, 14.6.

References

1. 

1. (a) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321-3329. (b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 316.

H. Bienayme C. Hulme G. Oddon P. Schmitt Chem. Eur. J.2000633213329(b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 316

2. 

2. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360-413.

P. Biginelli Gazz. Chim. Ital.189323360413

3. 

3. Aslam, M.; Verma, S. Int. J. Chem. Tech Res. 2012, 4, 109-111.

M. Aslam S. Verma Int. J. Chem. Tech Res.20124109111

4. 

4. Nevagi, R. J.; Narkhede, H. I. Der Pharma Chem. 2014, 6, 135-139.

R. J. Nevagi H. I. Narkhede Der Pharma Chem.20146135139

5. 

5. Kumar, P. S.; Idhayadhullal, A.; Abdul-Nasser, A. J.; Selvin, J. J. Serb. Chem. Soc. 2011, 76, 1-11.

P. S. Kumar A. Idhayadhullal A. J. Abdul-Nasser J. Selvin J. Serb. Chem. Soc.201176111

6. 

6. Lloyd, J.; Finlay, H. J.; Vacarro, W.; Hyunh, T.; Kover, A.; Bhandaru, R.; Yan, L.; Atwal, K.; Conder, M. L.; Jenkins-West, T.; Shi, H.; Huang, C.; Li, D.; Sun, H.; Levesque, P. Bioorg. Med. Chem. Lett. 2010, 20, 1436-1439.

J. Lloyd H. J. Finlay W. Vacarro T. Hyunh A. Kover R. Bhandaru L. Yan K. Atwal M. L. Conder T. Jenkins-West H. Shi C. Huang D. Li H. Sun P. Levesque Bioorg. Med. Chem. Lett.20102014361439

7. 

7. (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806-811. (b) Grover, G. J.; Dzwomczyk, S.; McMullen, D. M.; Normadinam, C. S.; Sleph, P. G.; Moreland, S. J. J. Cardiovasc. Pharmacol. 1995, 26, 289-294. (c) Zorkun, I. S.; Sarac, S.; Celebib, S.; Erolb, K. Bioorg. Med. Chem. 2006, 14, 8582-8589. (d) Sehon, C. A.; Wang, G. Z.; Viet, A. Q.; Goodman, K. B.; Dowdell, S. E.; Elkins, P. A.; Semus, S. F.; Evans, C.; Jolivette, L. J.; Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.; Wright, L. L.; Smith, G. K.; Behm, D. J.; Bentley, R. J. Med. Chem. 2008, 51, 6631-6634. (e) Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645-3653. (f) Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W.; Verma, S. P.; Gilani, S. J. Eur. J. Med. Chem. 2010, 45, 5113-5119.

K. S. Atwal B. N. Swanson S. E. Unger D. M. Floyd S. Moreland A. Hedberg B. C. O’Reilly J. Med. Chem.199134806811(b) Grover, G. J.; Dzwomczyk, S.; McMullen, D. M.; Normadinam, C. S.; Sleph, P. G.; Moreland, S. J. J. Cardiovasc. Pharmacol. 1995, 26, 289-294. (c) Zorkun, I. S.; Sarac, S.; Celebib, S.; Erolb, K. Bioorg. Med. Chem. 2006, 14, 8582-8589. (d) Sehon, C. A.; Wang, G. Z.; Viet, A. Q.; Goodman, K. B.; Dowdell, S. E.; Elkins, P. A.; Semus, S. F.; Evans, C.; Jolivette, L. J.; Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.; Wright, L. L.; Smith, G. K.; Behm, D. J.; Bentley, R. J. Med. Chem. 2008, 51, 6631-6634. (e) Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645-3653. (f) Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W.; Verma, S. P.; Gilani, S. J. Eur. J. Med. Chem. 2010, 45, 5113-5119

8. 

8. (a) Silder, D. R.; Larsen, R. D.; Chartrain, M.; Ikemote, N.; Roerber, C. M.; Taylor, C. S.; Li, W.; Bills, G. F. PCT Int. Appl. WO 1999, 07695. (b) Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron 1997, 53, 2803-2816.

D. R. Silder R. D. Larsen M. Chartrain N. Ikemote C. M. Roerber C. S. Taylor W. Li G. F. Bills PCT Int. Appl. WO19990769507695(b) Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron 1997, 53, 2803-2816

9. 

9. Bruce, M. A.; Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO 1998, 33791.

M. A. Bruce G. S. Pointdexter G. Johnson PCT Int. Appl. WO19983379133791

10. 

10. (a) Bose, D. S.; Sudharshan, M.; Chavhan, S. W. Arkivoc 2005, iii, 228-236. (b) Hajelsiddig, T. T. H.; Saeed, A. E. M. Int. J. Pharm. Sci. Res. 2015, 6, 2191-2196.

D. S. Bose M. Sudharshan S. W. Chavhan Arkivoc2005iii228236(b) Hajelsiddig, T. T. H.; Saeed, A. E. M. Int. J. Pharm. Sci. Res. 2015, 6, 2191-2196

11. 

11. Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; Montes D’Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165-169.

D. Russowsky F. A. Lopes V. S. S. da Silva K. F. S. Canto M. G. Montes D’Oca M. N. Godoi J. Braz. Chem. Soc.200415165169

12. 

12. Reddy, Y. T.; Rajitha, B.; Reddy, P. N.; Kumar, B. S.; Rao, V. P. Synth. Commun. 2004, 34, 3821-3825.

Y. T. Reddy B. Rajitha P. N. Reddy B. S. Kumar V. P. Rao Synth. Commun.20043438213825

13. 

13. Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Tetrahedron Lett. 2003, 44, 3305-3308.

A. S. Paraskar G. K. Dewkar A. Sudalai Tetrahedron Lett.20034433053308

14. 

14. Lu, J.; Bai, Y. Synthesis 2002, 466-470.

J. Lu Y. Bai Synthesis2002466470

15. 

15. Yadav, J. S.; Reddy, B. V. S.; Srinivas, R.; Venugopal, C.; Ramalingam, T. Synthesis 2001, 1341-1345.

J. S. Yadav B. V. S. Reddy R. Srinivas C. Venugopal T. Ramalingam Synthesis200113411345

16. 

16. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864-3868.

Y. Ma C. Qian L. Wang M. Yang J. Org. Chem.20006538643868

17. 

17. Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454-3457.

E. H. Hu D. R. Sidler U. H. Dolling J. Org. Chem.19986334543457

18. 

18. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270-6272.

B. C. Ranu A. Hajra U. Jana J. Org. Chem.20006562706272

19. 

19. Reddy, C. V.; Mahesh, M.; Raju, P. V. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett. 2002, 43, 2657-2659.

C. V. Reddy M. Mahesh P. V. V. K. Raju T. R. Babu V. V. N. Reddy Tetrahedron Lett.20024326572659

20. 

20. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801-4807.

N. Y. Fu Y. F. Yuan Z. Cao S. W. Wang J. T. Wang C. Peppe Tetrahedron20025848014807

21. 

21. Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587-590.

D. S. Bose L. Fatima H. B. Mereyala J. Org. Chem.200368587590

22. 

22. Carlos, R. D.; Bernardi, D.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5777-5780.

R. D. Carlos D. Bernardi G. Kirsch Tetrahedron Lett.20074857775780

23. 

23. Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis 1999, 1799-1803.

C. O. Kappe D. Kumar R. S. Varma Synthesis199917991803

24. 

24. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Bodaghi-Fard, M. A. Tetrahedron Lett 2003, 44, 2889-2891.

P. Salehi M. Dabiri M. A. Zolfigol M. A. Bodaghi-Fard Tetrahedron Lett20034428892891

25 

25 Sowmiya, M.; Sharma, A.; Parsodkar, S.; Mishra, B. G.; Dubey, A. Appl. Catal. A, 2007, 333, 272-280.

M. Sowmiya A. Sharma S. Parsodkar B. G. Mishra A. Dubey Appl. Catal. A2007333272280

26. 

26. Ahn, B. J.; Gang, M. S.; Chae, K.; Oh, Y.; Shin, J.; Chang, W. A. J. Ind. Eng. Chem. 2008, 14, 401-405.

B. J. Ahn M. S. Gang K. Chae Y. Oh J. Shin W. A. Chang Ind. Eng. Chem.200814401405

27. 

27. Debache, A.; Boumoud, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2006, 47, 5697-5699.

A. Debache B. Boumoud M. Amimour A. Belfaitah S. Rhouati B. Carboni Tetrahedron Lett.20064756975699

28. 

28. Liu, C. J.; Wang, J. D. Molecules 2009, 14, 763-770

C. J. Liu J. D. Wang Molecules200914763770

29. 

29. Nasr-Esfahani, M.; Hoseini, S. J.; Mohammadi, F. Chin. J. Catal. 2011, 32, 1484-1489.

M. Nasr-Esfahani S. J. Hoseini F. Mohammadi Chin. J. Catal.20113214841489

30. 

30. Moghaddas, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli-Hoseini, N. Chin. J. Catal. 2012, 33, 706-710.

M. Moghaddas A. Davoodnia M. M. Heravi N. Tavakoli-Hoseini Chin. J. Catal.201233706710

31. 

31. Herbst, R. M.; Shemin, D. Org. Syn. Coll. 1943, 2, 11.

R. M. Herbst D. Shemin Org. Syn. Coll.1943211

32. 

32. Muhammad Y.; Marek B.; Lubna S.; Shahzadd, S. A.; Ahmede, M.; Ashraff, M.; Alamf, U.; Khang, I. U.; Khan, A. F. Bioorg. Chem. 2014, 54, 96-104.

Y. Muhammad B. Marek S. Lubna S. A. Shahzadd M. Ahmede M. Ashraff U. Alamf I. U. Khang A. F. Khan Bioorg. Chem.20145496104

33. 

33. Kang, S.; Coopera, G.; Dunned, S. F.; Luand, C. H.; Surmeier, J. D., Silverman, R. B. Bioorg. Med. Chem. 2013, 21, 4365-4373.

S. Kang G. Coopera S. F. Dunned C. H. Luand R. B. Surmeier Bioorg. Med. Chem.20132143654373

34. 

34. Jetti, S. R.; Verma, D.; Jain, S. Arab. J. Chem. 2014, 689-701.

S. R. Jetti D. Verma S. Jain Arab. J. Chem.2014689701

35. 

35. Starcevich, J. T.; Laughlin, J. T.; Mohan, R. S. Tetrahedron Lett. 2013, 54, 983-985.

J. T. Starcevich J. T. Laughlin R. Mohan Tetrahedron Lett.201354983985

36. 

36. Heidarizadeh, F.; Nezhad, E. R.; Sajjadifar, S. Scientia Iranica C 2013, 20, 561-565.

F. Heidarizadeh E. R. Nezhad S. Sajjadifar Scientia Iranica C201320561565

37. 

37. Keivanloo, A.; Mirzaee, M.; Bakherad, M.; Soozani, A. Chin. J. Catal. 2014, 35 362-367.

A. Keivanloo M. Mirzaee M. Bakherad Chin. J. Catal.

38. 

38. Safari, J., Ravandi, S. G. J. Mol. Struct. 2014, 241, 1065-1066.

J. Safari S. G. Ravandi J. Mol. Struct.201424110651066

39. 

39. Tayebee, R.; Amini, M. M.; Ghadamgahi, M.; Armaghan, M. J. Mol. Catal. A 2013, 366, 266-274.

R. Tayebee M. M. Amini M. Ghadamgahi M. Armaghan J. Mol. Catal. A2013366266274

40. 

40. Benzekri, Z.; El Mejdoub, K.; Boukhris, S.; Sallek, B.; Lakhrissi, B.; Souizi, A. Synth. Commun. 2016, 46, 442-452.

Z. Benzekri K. El Mejdoub S. Boukhris B. Sallek B. Lakhrissi A. Souizi Synth. Commun.201646442452

41. 

41. An, L.; Han, L.; Wang, Z.; Huang, T.; Zhu, H. Biol. Pharm. Bull. 2016, 39, 267-271.

L. An L. Han Z. Wang T. Huang H. Zhu Biol. Pharm. Bull.201639267271

42. 

42. S. Girase, P.; J. Khairnar, B.; V. Nagarale, D.; R. Chaudhari, B. Der Pharma Chem. 2015, 7, 241-247.

S. Girase P.; J. Khairnar B.; V. Nagarale D.; R. Chaudhari Der Pharma Chem.20157241247

43. 

43. Gopinath, K. R.; Premkumar, H. B.; Shekar, H. S.; Rajendraprasad, K. J.; Nagabhushana, H.; Krishnappa, M. World J. Pharm. Pharmaceut. Sci. 2016, 5, 1578-1589.

K. R. Gopinath H. B. Premkumar H. S. Shekar K. J. Rajendraprasad H. Nagabhushana M. Krishnappa World J. Pharm. Pharmaceut. Sci.2016515781589

44. 

44. Azimi, S.; Hariri, M. Iran. Chem. Commun. 2015, 3, 13-20

S. Azimi M. Hariri Iran. Chem. Commun.201531320

45. 

45. Zare, A.; Nasouri, Z. J. Mol. Liq. 2016, 216, 364-369.

A. Zare Z. Nasouri J. Mol. Liq.2016216364369

46. 

46. Bashti, A.; Kiasat, A. R. Org. Chem. Res. 2016, 2, 28-38.

A. Bashti A. R. Kiasat Org. Chem. Res.201622838



This display is generated from NISO JATS XML with jats-html.xsl. The XSLT engine is libxslt.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Zakaria Benzekri, Redoua Benhdidou, Sara Hamia, Houda Serrar, Said Boukhris, Brahim Sallek, Amina Hassikou, Abdelaziz Souizi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Journal of the Mexican Chemical Society (J. Mex. Chem. Soc.) Vol 62, No 4 (2018). Quarterly publication (October-December). Edited and distributed by Sociedad Química de México, A.C. Barranca del Muerto 26, Col. Crédito Constructor, Del. Benito Juárez, C.P. 03940, Mexico City. Phone: +5255 56626837; +5255 56626823 Contact: soquimex@sqm.org.mx http://www.sqm.org.mx Editor-in-Chief: Ignacio González-Martínez. Indexed Journal. Certificate of reserved rights for recurrent publications under digital distribution granted by the Instituto Nacional del Derecho de Autor (INDAUTOR): 04-2018-091118040000-203. Certificate of lawful title and content: Under procedure. ISSN-e granted by the Instituto Nacional del Derecho de Autor (INDAUTOR): 2594-0317. ISSN granted by the Instituto Nacional del Derecho de Autor (INDAUTOR): 1870-249X. Postal registration of printed matter deposited by editors or agents granted by SEPOMEX: IM09-0312 Copyright © Sociedad Química de México, A.C. Total or partial reproduction is prohibited without written permission of the right holder. The Figures/schemes quality and the general contents of this publication are full responsibility of the authors. Updated April 23th, 2019 by Adriana Vázquez (editorial assistant, e-mail: editor.jmcs@gmail.com), J. Mex. Chem. Soc., Sociedad Química de México, A.C.