jmcs Journal of the Mexican Chemical Society J. Mex. Chem. Soc 1870-249X Sociedad Química de México A.C. 00006 Articles A Green and Simple Protocol one-pot Biginelli Condensation using Dicalcium Phosphate as Reusable Catalyst Benzekri Zakaria 1 Benhdidou Redoua 1 Hamia Sara 1 Serrar Houda 1 Boukhris Said 1 * Sallek Brahim 2 Hassikou Amina 1 Souizi Abdelaziz 1 Laboratory of Organic Chemistry, Organometallic and Theoretical. Faculty of Sciences, Ibn Tofaïl University, BO 133, 14000 Kenitra, Morocco Laboratory of Organic Chemistry, Organometallic and Theoretical . Faculty of Sciences Ibn Tofaïl University Kenitra Morocco Laboratory of Agricultural Resources and Process Engineering. F Faculty of Sciences, Ibn Tofaïl University, BO 133, 14000 Kenitra, Morocco Laboratory of Agricultural Resources and Process Engineering F Faculty of Sciences Ibn Tofaïl University Kenitra Morocco Corresponding author e-mail: nsboukhris@yahoo.com Tel.: +212 6 6310 1030; fax: +212 5 3732 9433. Jul-Sep 2017 61 3 217 221 14 11 2016 22 03 2017 This is an open-access article distributed under the terms of the Creative Commons Attribution License Abstract.

Dicalcium phosphate dihydrate (DCPD) was used as a green and reusable catalyst in order to synthesized two important categories of heterocycles, 3,4-dihydropyrimidin-2-ones and 3,4-dihydropyrimidin-2-thiones. The advantages of our method are as follow: short reaction times, green process, reduced environmental hazards and high isolated yield of products.

<bold>Resumen</bold>.

Se empleó el fosfato dicálcico dihidratado (DCPD) como catalizador verde y reusable para sintetizar dos importantes categorías de heterociclos, 3,4-dihidropirimidin-2-onas y 3,4-dihidropirimidin-2-tionas. Nuestro método presenta las siguientes ventajas: tiempos de reacción cortos, proceso verde, peligros ambientales reducidos y altos rendimientos de los productos aislados.

Key words: Heterogeneous catalysis Green process Dicalcium phosphate 3,4-Dihydropyrimidin-2-ones 3,4-Dihydropyrimidin-2-thiones <bold>Palabras clave</bold>: Catalizador heterogéneo Proceso verde Fosfato dicálcico 3,4-Dihidropirimidin-2-onas 3,4-Dihidropirimidin-2-tionas
Introduction

Multicomponent reactions (MCRs) are of great importance in both organic and medicinal chemistry for various reasons [(1)]. They offer significant advantages compared to conventional synthesis. Thus, MCR condensations involve three or more compounds that react in a one-pot reaction to form a new product. The Biginelli reaction is one of the most important multicomponent reactions for the synthesis of dihydropyrimidinones, consisting in the acid catalyzed cyclocondensation reaction of an aldehyde, a b-ketoester and a urea (or thiourea) [(2)]. Over the past decade, dihydropyrimidin-2-ones (DHPMs) and derivatives have attracted considerable attention in organic and medicinal chemistry because of their pharmacological and therapeutic properties [(3)]. Some derivatives have emerged due to their potential antiviral, antitumor, antibacterial and anti-inflammatory activities [(3-5)]. More recently, functionalized DHPMs are considered potent calcium channel blockers [(6)], antihypertensive agents [(7)], adrenergic antagonists [(8)] and neuropeptide Y (NPY) antagonists [(9)]. The original Biginelli protocol for the DHMPs preparation consisted of heating a mixture of the three components (1equiv of an aldehyde 1, 1 equiv of β-keto ester 2, and 1.5 equiv of urea 3), in ethanol with a catalytic amount of HCl [(2,4)]. This procedure leads in one-pot reaction to the desired DHMPs, but in low yields, particularly for substituted aromatic and aliphatic aldehydes [(7)].

The Biginelli condensation is also performed using Lewis acids such as BF3OEt2, polyphosphate esters, and reagents like InCl3, Mn(OAc)3, trimethylsilyltriflate, LaCl3·7H2O, CeCl3·7H2O, LiClO4, Yb(OTf)3, ZrCl4, or ZrOCl2, among others [(8,10-24)], STO/Al-P [(25)]. FeCl3/Nanopore silica [(26)], PhB(OH)2 [(27)], Cu(NH2SO3)2 [(28)], Fe3O4 nanoparticles [(29)], sulfonated carbon materials (SCMs) [(30)], N-acetyl glycine (NAG) [(31-32)], Yb(OTf)3 [(33)], 3-[(3-(trimethoxysilyl)propyl)thio]propane-1-oxy-sulfonic acid (TMSPTPOSA) [(34)], Fe(OTs)3·6H2O [(35)], 3-(2-carboxybenzoyl)-1-methyl-1H-imidazolium chloride [Cbmim]Cl [(36)], Boehmite nanoparticles [(37)], TiO2-CNTs [(38)] and H5PW10V2O40/Pip-SBA-15 [(39)]. However, many of these methods use longer reaction times, strong acidic conditions and stoichiometric amounts of catalysts.

In the present study, we report a green and valid procedure for the synthesis of 3,4-dihydro pyrimidin-2-ones via one-pot condensation of aromatic aldehydes, acetylacetone or ethyl acetoacetate and urea or thiourea in the presence of dicalcium phosphate dihydrate (DCPD) [(40)] as a heterogeneous catalyst.

Results and Discussion

Dicalcium phosphate dihydrate (DCPD) was synthesized by double decomposition of calcium nitrate tetrahydrate and ammonium dihydrogenophosphate. After 2 h of maturation, the suspension was filtered, washed and freeze dried. The appropriate physical methods which should be used to confirm the identity of the product are IR absorption spectroscopy, XRD, elemental analyses of calcium and phosphate concentrations, scanning electron microscopy, and specific surface by BET [(40)].

The choice of appropriate reaction conditions is important for a successful synthesis. To study the effect of catalyst on the reaction, the one-pot condensation of benzaldehyde 1a (1 mmol), acetylacetone 2 (1 mmol) and urea 3 (1.5 mmol) was chosen as a model reaction in the presence of 5 mol% dicalcium phosphate dihydrate (DCPD) at reflux conditions in EtOH (Scheme 1). The efficiency of the condensations was mainly affected by the amount of the catalyst. Biginelli reaction in the absence of catalyst (Table 1, entry 1) was found to be very slow and gave a poor yield of DHPM (39 % isolated) after a longer reaction time (45 min), while good results were obtained in the presence of DCPD. The optimal amount of the catalyst was 7 mol% (Table 1, entry 6), whereas a higher amount of the catalyst did not increase the yield noticeably (Table 1, entry 7).

Synthesis of 3,4-dihydropyrimidin-2(1H)-one <bold>4a</bold> catalyzed by dicalcium phosphate dihydrate (DCPD).

Optimization of the reaction conditions.<sup>a</sup>

a Reaction conditions: benzaldehyde (1a) (1 mmol), acetylacetone (2a) (1 mmol), urea (3a) (1.5 mmol), DCPD, 10 mL solvent at reflux.

b Isolated yield.

In order to optimize the reaction conditions, various solvents such as EtOH, MeOH, butanol, isopropanol, CH3CN, AcOEt, THF and solvent-free conditions in the presence of DCPD as the catalyst were used (Table 1). Reaction in CH3CN and AcOEt gave low product yields even after 35 min (Table 1, entries 11 and 13). The yields were moderate in case of methanol, butanol, isopropanol, THF and solvent-free condition. The best results were obtained when the reaction was carried out in ethanol at reflux for 35 min in the presence of 7 mol% of catalyst (Table 1, entry 6).

After the condensation, the DCPD catalyst was filtered, washed with EtOH and dried in vacuum oven at 100 °C. The activity of the recovered catalyst did not decrease appreciably even after six consecutive runs, and no significant loss of conversion was observed, depicting the high stability of the catalyst under the reaction conditions (Table 2).

Reusability of the catalyst in the synthesis of 3,4-dihydropyrimidin-2-one <bold>4a.</bold>

a Isolated yields.

The generality of reaction was studied under optimal conditions by varying the structure of aldehyde (Scheme 2). As the data in Table 3 show, the catalyst was highly efficient for the reaction and all aromatic aldehydes (containing electron-withdrawing substituents or electron-donating substituents) afforded the corresponding products in high yields within short reaction times.

Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones derivatives catalyzed by DCPD.

Synthesis of pyrimidin-2-ones/thiones in the presence of DCPD catalyst.

a Isolated yields.

The efficiency of our newly synthesized catalyst for the synthesis of 3,4-dihydropyrimidin-2-ones and 3,4-dihydropyrimidin-2-thiones 4 was further evaluated by comparing its performance with several other catalysts reported in the literature [(41-46)]. The results revealed that DCPD catalyst performed much more effectively than others in terms of providing a very short reaction time, mild conditions and a high yield of the product (Table 4).

Comparison of the catalytic efficiency of DCPD with other catalysts in the preparation of 3,4-dihydropyrimidin-2-ones via Biginelli reaction.

Conclusions

In summary, we have developed a convenient and highly efficient method for the synthesis of 3,4-dihydropyrimidin-2-ones and 3,4-dihydropyrimidin-2-thiones derivatives. The mild reaction conditions, experimental simplicity, straight forward purification procedures, excellent yields with short reaction times, as well as the application of green chemistry principles, are the advantages of this methodology.

Experimental Section General procedure for the synthesis of catalyst (DCPD)

Dicalcium phosphate dihydrate (DCPD) was prepared by mixing 50 mL of a 0.3 M solution of ammonium dihydrogenophosphate ((NH4)H2PO4) with 50 mL of a 0.5 M solution of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) at room temperature. After 2 h of maturation, the precipitate was collected by vacuum filtration, washed with deionized water and freeze dried overnight.

Typical experimental procedure for the synthesis of compounds 4a-h

A mixture of urea or thiourea (1.5 mmol), substituted benzaldehyde (1 mmol), b-ketoester (1 mmol) and dicalcium phosphate dihydrate (DCPD) (7 mol %) in ethanol (10 ml) was heated to reflux for a specified time (TLC monitoring). Solid precipitated out from the reaction mixture was filtered, and recrystallized from methanol to afford pure 3,4-dihydropyrimidin-2(1H)-ones/thiones as yellow/white solids. The catalyst was recovered by vacuum filtration during recrystallization and treated by the procedure mentioned below.

The products prepared 4 are known compounds [(22-28)] and were confirmed by comparing the 1H NMR and 13C NMR data with authentic samples reported in the literature.

5-Acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2-one (4a). Mp 237-239°C (lit.[(26)] 238-239°C). 1H NMR (300 MHz, DMSO-d6): δ 9.16 (s, 1H, NH), 7.71 (s, 1H, NH), 7.20-7.30 (m, 5H, ArH), 5.12 (d, 1H, J = 3 Hz, CH), 2.22 (s, 3H, CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.1, 152.6, 148.8, 145.3, 128.8, 126.7, 99.7, 54.4, 28.3, 14.5.

Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine- 5-carboxylate (4b). Mp 208-210°C (lit.[(23)] 207-208°C). 1H NMR (300 MHz, DMSO-d6): δ 9.16 ( s, 1H, NH),7.71 (s, 1H, NH), 7.21-7.32 (m, 5H, ArH), 5.12 (s, 1H, CH), 3.97 (q, J = 7.4 Hz, 2H, OCH2), 2.22 (s, 3H, CH3), 1.10 (t, J = 7.4 Hz, 3H, OCH2CH3); 13C NMR (75MHz, DMSO-d6): δ 165.8, 152.6, 148.8, 145.4, 128.8, 127.7, 126.8, 99.7, 59.6 54.4, 18.2, 14.5.

Ethyl 4-(4-chlorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4c). Mp 212-214°C (lit.[(22)] 212-214°C). 1H NMR (300 MHz, DMSO-d6): δ 9.28 (s, 1H, NH), 7.73 (s, 1H, NH), 7.09-7.55 (m, 4H, ArH), 5.57 (s, 1H, CH), 3.89 (q, J = 7.3 Hz, 2H, OCH2), 2.27 (s, 3H, CH3), 0.98 (t, J = 7.3 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 161.6, 150.0, 141.3, 133.0, 130.7, 129.2, 128.4, 97,9, 59.6, 51.6, 18.1, 14,3.

Ethyl 4-(4-chlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4d). Mp 186-188°C (lit.[(25)] 186-188°C). 1H NMR (300 MHz, DMSO-d6): δ 9.22 (s, 1H, NH), 7.75 (s, 1H, NH), 7.21-7.38 (m, 4H, ArH), 5.12 (s, 1H, CH), 3.97 (q, J = 7.2 Hz, 2H, OCH2), 2.22 (s, 3H, CH3), 1.07 (t, J = 7.2 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.6, 152.4, 149.1, 144.2, 132.2, 128.8, 128.6, 99.3, 59.7, 53.8, 18.2, 14.5.

Ethyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4e). Mp 210-212°C (lit.[(22)] 211-212°C). 1H NMR (300 MHz, DMSO-d6): δ 9.32 (s, 1H, NH), 8.20 (d, J = 9 Hz, 2H),7.86 (s, 1H, NH), 7.47-7.56 (m, 4H, ArH), 5.26 (s, 1H, CH), 3.97 (q, J = 7.4 Hz, 2H, OCH2), 2.24 (s, 3H, CH3), 1.09 (t, J = 7.4 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.5, 158.1, 152.44, 149.8, 147.2, 139.6, 130.7, 128.1, 124.6, 98.7, 62.0, 59.9, 54.2, 18.3, 14.5.

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4f). Mp 200-202°C (lit.[(27)] 200-202°C). 1H NMR (300 MHz, DMSO-d6): δ 9.10 (s, 1H, NH), 7,64 (s, 1H, NH), 6.83-7.13 (m, 4H, ArH ), 5.07 (s, 1H, CH), 3.96 (q, J = 7.5 Hz, 2H, OCH2), 3.69 (s, 3H, OCH3), 2.21 (s, 3H, CH3), 1.07 (t, J = 7.5 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.9, 158.9, 152.6, 148.5, 137.5, 127.9, 114.2, 100.0, 59.6, 55.5, 53.8, 18.2, 14.6.

Ethyl 4-(4-methoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5 carboxyl -ate (4g). Mp 153-155°C (lit.[(27)] 153°C). 1H NMR (300 MHz, DMSO-d6): δ 9.12 (s, 1H, NH), 7.63 (s, 1H, NH), 6.83-7.14 (m, 4H, ArH), 5,07 (s, 1H, CH), 3.96 (q, J = 7.3 Hz, 2H, OCH2), 3.69 (s, 3H, OCH3), 2.21 (s, 3H, CH3), 1.10 (t, J = 7.2 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 165.9, 158.9, 152.6, 148.5, 137.5, 137.5, 127.8, 114.2, 100.1, 59.6, 55.5, 53.8, 18.2, 14.5.

Ethyl 4-(4-(dimethylamino) phenyl)-6-methyl-2-oxo-1,2,3, 4-tetrahydropyrimidine-5-car-boxylate (4h). Mp 228-230°C (lit.[(28)] 228-230°C). 1H NMR (300 MHz, DMSO-d6): δ 9.06 (s, 1H, NH), 7.68 (s, 1H, NH), 6.61-7.56 (m, 4H, ArH), 5.01 (s, 1H, CH), 3.97 (q, J = 7.3 Hz, 2H, OCH2), 3.02 (s, 3H, NCH3), 3.02 (s, 3H, NCH3), 2.20 (s, 3H, CH3), 1.11 (t, J = 7.3 Hz, 3H, OCH2CH3); 13C NMR (75 MHz, DMSO-d6): δ 190.4, 165.9, 152.8, 150.2, 147.9, 133.0, 127.4, 112.7, 111.5, 100.4, 59.6, 53.8, 18.2, 14.6.

References 1. (a) Bienayme, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321-3329. (b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 316. Bienayme H. Hulme C. Oddon G. Schmitt P. Chem. Eur. J. 2000 6 3321 3329 (b) Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 316 2. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360-413. Biginelli P. Gazz. Chim. Ital. 1893 23 360 413 3. Aslam, M.; Verma, S. Int. J. Chem. Tech Res. 2012, 4, 109-111. Aslam M. Verma S. Int. J. Chem. Tech Res. 2012 4 109 111 4. Nevagi, R. J.; Narkhede, H. I. Der Pharma Chem. 2014, 6, 135-139. Nevagi R. J. Narkhede H. I. Der Pharma Chem. 2014 6 135 139 5. Kumar, P. S.; Idhayadhullal, A.; Abdul-Nasser, A. J.; Selvin, J. J. Serb. Chem. Soc. 2011, 76, 1-11. Kumar P. S. Idhayadhullal A. Abdul-Nasser A. J. Selvin J. J. Serb. Chem. Soc. 2011 76 1 11 6. Lloyd, J.; Finlay, H. J.; Vacarro, W.; Hyunh, T.; Kover, A.; Bhandaru, R.; Yan, L.; Atwal, K.; Conder, M. L.; Jenkins-West, T.; Shi, H.; Huang, C.; Li, D.; Sun, H.; Levesque, P. Bioorg. Med. Chem. Lett. 2010, 20, 1436-1439. Lloyd J. Finlay H. J. Vacarro W. Hyunh T. Kover A. Bhandaru R. Yan L. Atwal K. Conder M. L. Jenkins-West T. Shi H. Huang C. Li D. Sun H. Levesque P. Bioorg. Med. Chem. Lett. 2010 20 1436 1439 7. (a) Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O’Reilly, B. C. J. Med. Chem. 1991, 34, 806-811. (b) Grover, G. J.; Dzwomczyk, S.; McMullen, D. M.; Normadinam, C. S.; Sleph, P. G.; Moreland, S. J. J. Cardiovasc. Pharmacol. 1995, 26, 289-294. (c) Zorkun, I. S.; Sarac, S.; Celebib, S.; Erolb, K. Bioorg. Med. Chem. 2006, 14, 8582-8589. (d) Sehon, C. A.; Wang, G. Z.; Viet, A. Q.; Goodman, K. B.; Dowdell, S. E.; Elkins, P. A.; Semus, S. F.; Evans, C.; Jolivette, L. J.; Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.; Wright, L. L.; Smith, G. K.; Behm, D. J.; Bentley, R. J. Med. Chem. 2008, 51, 6631-6634. (e) Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645-3653. (f) Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W.; Verma, S. P.; Gilani, S. J. Eur. J. Med. Chem. 2010, 45, 5113-5119. Atwal K. S. Swanson B. N. Unger S. E. Floyd D. M. Moreland S. Hedberg A. O’Reilly B. C. J. Med. Chem. 1991 34 806 811 (b) Grover, G. J.; Dzwomczyk, S.; McMullen, D. M.; Normadinam, C. S.; Sleph, P. G.; Moreland, S. J. J. Cardiovasc. Pharmacol. 1995, 26, 289-294. (c) Zorkun, I. S.; Sarac, S.; Celebib, S.; Erolb, K. Bioorg. Med. Chem. 2006, 14, 8582-8589. (d) Sehon, C. A.; Wang, G. Z.; Viet, A. Q.; Goodman, K. B.; Dowdell, S. E.; Elkins, P. A.; Semus, S. F.; Evans, C.; Jolivette, L. J.; Kirkpatrick, R. B.; Dul, E.; Khandekar, S. S.; Yi, T.; Wright, L. L.; Smith, G. K.; Behm, D. J.; Bentley, R. J. Med. Chem. 2008, 51, 6631-6634. (e) Chikhale, R. V.; Bhole, R. P.; Khedekar, P. B.; Bhusari, K. P. Eur. J. Med. Chem. 2009, 44, 3645-3653. (f) Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W.; Verma, S. P.; Gilani, S. J. Eur. J. Med. Chem. 2010, 45, 5113-5119 8. (a) Silder, D. R.; Larsen, R. D.; Chartrain, M.; Ikemote, N.; Roerber, C. M.; Taylor, C. S.; Li, W.; Bills, G. F. PCT Int. Appl. WO 1999, 07695. (b) Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron 1997, 53, 2803-2816. Silder D. R. Larsen R. D. Chartrain M. Ikemote N. Roerber C. M. Taylor C. S. Li W. Bills G. F. PCT Int. Appl. WO 1999 07695 07695 (b) Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron 1997, 53, 2803-2816 9. Bruce, M. A.; Pointdexter, G. S.; Johnson, G. PCT Int. Appl. WO 1998, 33791. Bruce M. A. Pointdexter G. S. Johnson G. PCT Int. Appl. WO 1998 33791 33791 10. (a) Bose, D. S.; Sudharshan, M.; Chavhan, S. W. Arkivoc 2005, iii, 228-236. (b) Hajelsiddig, T. T. H.; Saeed, A. E. M. Int. J. Pharm. Sci. Res. 2015, 6, 2191-2196. Bose D. S. Sudharshan M. Chavhan S. W. Arkivoc 2005 iii 228 236 (b) Hajelsiddig, T. T. H.; Saeed, A. E. M. Int. J. Pharm. Sci. Res. 2015, 6, 2191-2196 11. Russowsky, D.; Lopes, F. A.; da Silva, V. S. S.; Canto, K. F. S.; Montes D’Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165-169. Russowsky D. Lopes F. A. da Silva V. S. S. Canto K. F. S. Montes D’Oca M. G. Godoi M. N. J. Braz. Chem. Soc. 2004 15 165 169 12. Reddy, Y. T.; Rajitha, B.; Reddy, P. N.; Kumar, B. S.; Rao, V. P. Synth. Commun. 2004, 34, 3821-3825. Reddy Y. T. Rajitha B. Reddy P. N. Kumar B. S. Rao V. P. Synth. Commun. 2004 34 3821 3825 13. Paraskar, A. S.; Dewkar, G. K.; Sudalai, A. Tetrahedron Lett. 2003, 44, 3305-3308. Paraskar A. S. Dewkar G. K. Sudalai A. Tetrahedron Lett. 2003 44 3305 3308 14. Lu, J.; Bai, Y. Synthesis 2002, 466-470. Lu J. Bai Y. Synthesis 2002 466 470 15. Yadav, J. S.; Reddy, B. V. S.; Srinivas, R.; Venugopal, C.; Ramalingam, T. Synthesis 2001, 1341-1345. Yadav J. S. Reddy B. V. S. Srinivas R. Venugopal C. Ramalingam T. Synthesis 2001 1341 1345 16. Ma, Y.; Qian, C.; Wang, L.; Yang, M. J. Org. Chem. 2000, 65, 3864-3868. Ma Y. Qian C. Wang L. Yang M. J. Org. Chem. 2000 65 3864 3868 17. Hu, E. H.; Sidler, D. R.; Dolling, U. H. J. Org. Chem. 1998, 63, 3454-3457. Hu E. H. Sidler D. R. Dolling U. H. J. Org. Chem. 1998 63 3454 3457 18. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270-6272. Ranu B. C. Hajra A. Jana U. J. Org. Chem. 2000 65 6270 6272 19. Reddy, C. V.; Mahesh, M.; Raju, P. V. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett. 2002, 43, 2657-2659. Reddy C. V. Mahesh M. Raju P. V. V. K. Babu T. R. Reddy V. V. N. Tetrahedron Lett. 2002 43 2657 2659 20. Fu, N. Y.; Yuan, Y. F.; Cao, Z.; Wang, S. W.; Wang, J. T.; Peppe, C. Tetrahedron 2002, 58, 4801-4807. Fu N. Y. Yuan Y. F. Cao Z. Wang S. W. Wang J. T. Peppe C. Tetrahedron 2002 58 4801 4807 21. Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587-590. Bose D. S. Fatima L. Mereyala H. B. J. Org. Chem. 2003 68 587 590 22. Carlos, R. D.; Bernardi, D.; Kirsch, G. Tetrahedron Lett. 2007, 48, 5777-5780. Carlos R. D. Bernardi D. Kirsch G. Tetrahedron Lett. 2007 48 5777 5780 23. Kappe, C. O.; Kumar, D.; Varma, R. S. Synthesis 1999, 1799-1803. Kappe C. O. Kumar D. Varma R. S. Synthesis 1999 1799 1803 24. Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Bodaghi-Fard, M. A. Tetrahedron Lett 2003, 44, 2889-2891. Salehi P. Dabiri M. Zolfigol M. A. Bodaghi-Fard M. A. Tetrahedron Lett 2003 44 2889 2891 25 Sowmiya, M.; Sharma, A.; Parsodkar, S.; Mishra, B. G.; Dubey, A. Appl. Catal. A, 2007, 333, 272-280. Sowmiya M. Sharma A. Parsodkar S. Mishra B. G. Dubey A. Appl. Catal. A 2007 333 272 280 26. Ahn, B. J.; Gang, M. S.; Chae, K.; Oh, Y.; Shin, J.; Chang, W. A. J. Ind. Eng. Chem. 2008, 14, 401-405. Ahn B. J. Gang M. S. Chae K. Oh Y. Shin J. Chang W. A. Ind. Eng. Chem. 2008 14 401 405 27. Debache, A.; Boumoud, B.; Amimour, M.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2006, 47, 5697-5699. Debache A. Boumoud B. Amimour M. Belfaitah A. Rhouati S. Carboni B. Tetrahedron Lett. 2006 47 5697 5699 28. Liu, C. J.; Wang, J. D. Molecules 2009, 14, 763-770 Liu C. J. Wang J. D. Molecules 2009 14 763 770 29. Nasr-Esfahani, M.; Hoseini, S. J.; Mohammadi, F. Chin. J. Catal. 2011, 32, 1484-1489. Nasr-Esfahani M. Hoseini S. J. Mohammadi F. Chin. J. Catal. 2011 32 1484 1489 30. Moghaddas, M.; Davoodnia, A.; Heravi, M. M.; Tavakoli-Hoseini, N. Chin. J. Catal. 2012, 33, 706-710. Moghaddas M. Davoodnia A. Heravi M. M. Tavakoli-Hoseini N. Chin. J. Catal. 2012 33 706 710 31. Herbst, R. M.; Shemin, D. Org. Syn. Coll. 1943, 2, 11. Herbst R. M. Shemin D. Org. Syn. Coll. 1943 2 11 32. Muhammad Y.; Marek B.; Lubna S.; Shahzadd, S. A.; Ahmede, M.; Ashraff, M.; Alamf, U.; Khang, I. U.; Khan, A. F. Bioorg. Chem. 2014, 54, 96-104. Muhammad Y. Marek B. Lubna S. Shahzadd S. A. Ahmede M. Ashraff M. Alamf U. Khang I. U. Khan A. F. Bioorg. Chem. 2014 54 96 104 33. Kang, S.; Coopera, G.; Dunned, S. F.; Luand, C. H.; Surmeier, J. D., Silverman, R. B. Bioorg. Med. Chem. 2013, 21, 4365-4373. Kang S. Coopera G. Dunned S. F. Luand C. H. Surmeier R. B. Bioorg. Med. Chem. 2013 21 4365 4373 34. Jetti, S. R.; Verma, D.; Jain, S. Arab. J. Chem. 2014, 689-701. Jetti S. R. Verma D. Jain S. Arab. J. Chem. 2014 689 701 35. Starcevich, J. T.; Laughlin, J. T.; Mohan, R. S. Tetrahedron Lett. 2013, 54, 983-985. Starcevich J. T. Laughlin J. T. Mohan R. Tetrahedron Lett. 2013 54 983 985 36. Heidarizadeh, F.; Nezhad, E. R.; Sajjadifar, S. Scientia Iranica C 2013, 20, 561-565. Heidarizadeh F. Nezhad E. R. Sajjadifar S. Scientia Iranica C 2013 20 561 565 37. Keivanloo, A.; Mirzaee, M.; Bakherad, M.; Soozani, A. Chin. J. Catal. 2014, 35 362-367. Keivanloo A. Mirzaee M. Bakherad M. Chin. J. Catal. 38. Safari, J., Ravandi, S. G. J. Mol. Struct. 2014, 241, 1065-1066. Safari J. Ravandi S. G. J. Mol. Struct. 2014 241 1065 1066 39. Tayebee, R.; Amini, M. M.; Ghadamgahi, M.; Armaghan, M. J. Mol. Catal. A 2013, 366, 266-274. Tayebee R. Amini M. M. Ghadamgahi M. Armaghan M. J. Mol. Catal. A 2013 366 266 274 40. Benzekri, Z.; El Mejdoub, K.; Boukhris, S.; Sallek, B.; Lakhrissi, B.; Souizi, A. Synth. Commun. 2016, 46, 442-452. Benzekri Z. El Mejdoub K. Boukhris S. Sallek B. Lakhrissi B. Souizi A. Synth. Commun. 2016 46 442 452 41. An, L.; Han, L.; Wang, Z.; Huang, T.; Zhu, H. Biol. Pharm. Bull. 2016, 39, 267-271. An L. Han L. Wang Z. Huang T. Zhu H. Biol. Pharm. Bull. 2016 39 267 271 42. S. Girase, P.; J. Khairnar, B.; V. Nagarale, D.; R. Chaudhari, B. Der Pharma Chem. 2015, 7, 241-247. Girase S. Khairnar P.; J. Nagarale B.; V. Chaudhari D.; R. Der Pharma Chem. 2015 7 241 247 43. Gopinath, K. R.; Premkumar, H. B.; Shekar, H. S.; Rajendraprasad, K. J.; Nagabhushana, H.; Krishnappa, M. World J. Pharm. Pharmaceut. Sci. 2016, 5, 1578-1589. Gopinath K. R. Premkumar H. B. Shekar H. S. Rajendraprasad K. J. Nagabhushana H. Krishnappa M. World J. Pharm. Pharmaceut. Sci. 2016 5 1578 1589 44. Azimi, S.; Hariri, M. Iran. Chem. Commun. 2015, 3, 13-20 Azimi S. Hariri M. Iran. Chem. Commun. 2015 3 13 20 45. Zare, A.; Nasouri, Z. J. Mol. Liq. 2016, 216, 364-369. Zare A. Nasouri Z. J. Mol. Liq. 2016 216 364 369 46. Bashti, A.; Kiasat, A. R. Org. Chem. Res. 2016, 2, 28-38. Bashti A. Kiasat A. R. Org. Chem. Res. 2016 2 28 38

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Zakaria Benzekri, Redoua Benhdidou, Sara Hamia, Houda Serrar, Said Boukhris, Brahim Sallek, Amina Hassikou, Abdelaziz Souizi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Journal of the Mexican Chemical Society (J. Mex. Chem. Soc.) Vol 62, No 2 (2018). Quarterly publication (April-June). Edited and distributed by Sociedad Química de México, A.C. Barranca del Muerto 26, Col. Crédito Constructor, Del. Benito Juárez, C.P. 03940, Mexico City. Phone: +5255 56626837; +5255 56626823 Contact: soquimex@sqm.org.mx http://www.sqm.org.mx Editor-in-Chief: Ignacio González-Martínez. Indexed Journal. Certificate of reserved rights for recurrent publications under digital distribution granted by the Instituto Nacional del Derecho de Autor (INDAUTOR): 04-2018-091118040000-203. Certificate of lawful title and content: Under procedure. ISSN-e granted by the Instituto Nacional del Derecho de Autor (INDAUTOR): 2594-0317. ISSN granted by the Instituto Nacional del Derecho de Autor (INDAUTOR): 1870-249X. Postal registration of printed matter deposited by editors or agents granted by SEPOMEX: IM09-0312 Copyright © Sociedad Química de México, A.C. Total or partial reproduction is prohibited without written permission of the right holder. The Figures/schemes quality and the general contents of this publication are full responsibility of the authors. Updated December 12th, 2018 by Adriana Vázquez (editorial assistant, e-mail: editor.jmcs@gmail.com), J. Mex. Chem. Soc., Sociedad Química de México, A.C.